0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一种微型可穿戴皮肤界面智能石墨烯纳米电子(SIGN)贴片

微流控 来源:微流控 2024-04-09 10:40 次阅读

汗液自身包含了丰富的与个人健康状况密切相关的生物化学信息,因此通过汗液可以对深入的身体生理状态进行无创监测。由于能够测量汗液中浓度动态波动的生物化学标志物,可穿戴生物化学传感器在个人疾病诊断中具有重要意义,而且它可以为个性化医疗、体能监测和疾病预诊断等主要领域的各种应用提供全面的分子信息,受到了广泛的关注。近年来,各种可穿戴生物化学传感器已被证明可用于检测汗液生物标志物。遗憾的是,绝大多数现有的皮肤适形可穿戴传感器通常是直接连贴在人体皮肤上使用,并且由于天然汗液分泌有限和快速蒸发等原因,器件总是不能快速收集足够量的汗液样本。此外,汗液杂质生物污垢和接触摩擦也会降低传感器的耐用性、检测精度和灵敏度。

近期,北京航空航天大学郝壮副教授,哈尔滨工业大学潘昀路教授、李斐然副教授,沈阳航空航天大学马爽讲师与合作者研发了一种微型可穿戴皮肤界面智能石墨烯纳米电子(SIGN)贴片,该贴片采用了一种新型Janus膜集成表面润湿性可切换微流控模块,具有自主汗液采样和净化功能,可用于汗液生物标志物的原位分析。该研究以“Intelligent Wearable Graphene Nano-electronics with Switchable Surface Wettability Capabilities for Autonomous Sweat Enrichment-Purification-Analysis”为题发表在Advanced Functional Materials期刊上。北京航空航天大学为论文的第一完成单位,北京航空航天大学、哈尔滨工业大学和沈阳航空航天大学为论文的共同通讯单位。

SIGN贴片的组成与功能

该SIGN贴片采用电解质栅极-石墨烯晶体管作为信号转换平台,与现有的生物标志物电化学检测方法相比,石墨烯晶体管具有反应快、灵敏度高、生化功能化简单等优点。由于完全集成和小型化的平面电解质栅极结构,可以在衬底上轻松实现晶体管阵列的高效可扩展制造。

乳酸是葡萄糖厌氧代谢的产物,与代谢紊乱密切相关,包括糖尿病、肝病和肿瘤发生,或其他疾病,例如细菌性脑膜炎、脑组织缺氧、局部缺血和某些先天性代谢缺陷。汗液乳酸的异常水平与呼吸衰竭、低氧血症甚至休克和死亡具有合理的相关性,被认为是评估体能消耗的关键生物标志物之一,在该研究中被用作检验SIGN贴片性能的代表。

在该研究中,乳酸脱氢酶(LDH)和烟酰胺腺嘌呤二核苷酸+(NAD+)被用作生物识别元件,并在石墨烯上进行功能化修饰。由于良好的NAD+-乳酸反应可逆性,NAD+/LDH功能化石墨烯晶体管具有出色的信号再现性,重复使用50次后,最大信号波动误差小于6.2%。此外,LDH和NAD+的持久酶活性也为传感晶体管在暴露于汗液中时提供了良好的长期(超过1个月)稳定性。此外,TWEEN 80对人体汗液中的脂肪酸和尿素等复杂成分具有较低的结合亲和力,并防止杂质生物污垢的形成,它在石墨烯上被功能化以形成钝化层,并进一步增强传感稳定性。值得一提的是,通过取代生物识别元件,晶体管可以毫不费力地适应于检测各种生理生物标志物,而不仅仅是乳酸。

在该研究中,研究人员将一种全新自制的不对称表面能分布(ASED)微流控模块安装在石墨烯通道上。由于雪花形ASED超亲水汗液采样通道和增量分布室的可切换表面润湿性特性,可以实现大流量汗液的快速定向传输,以收集足够数量的汗液样本。由于嵌入式Janus微滤(MF)膜的单向液体传输行为,可以有效地自我净化和富集汗液,从而消除杂质干扰,提高传感精度和灵敏度。

石墨烯晶体管连接了一个高度集成的自行设计的信号处理单元(图1b),其整体尺寸小于一张信用卡,并在低成本的柔性印刷电路板(PCB)上制造,可以实现高分辨率的晶体管信号转导和采集、原位信号处理以及到Android智能手表或云服务器的无线数据传输。此外,佩戴者可以在活动中实时读取汗液乳酸监测数据和心率,或通过定制的安卓智能手表应用程序查看历史检测结果。通过将佩戴者在活动中的生理指标与云大数据进行综合比较,SIGN贴片可以智能地给出运动强度“合理”与否等初步诊断评估意见。当汗液乳酸水平超过合理限度时,它还可以通过智能手表发出振动警告提醒。此外,该研究制备的可穿戴SIGN贴片摆脱了之前报道的汗液监测集成系统中常用的笨重手机,允许用户自由移动。此外,SIGN贴片还首次提出并实现了根据生物标志物检测结果分析,智能自主地为过度运动提供感知警报信号以防止意外发生的策略。

c04ebf18-f619-11ee-a297-92fbcf53809c.jpg

图1 微型可穿戴SIGN贴片的组成:(a)定制智能手表APP的交互式界面,用于现场查看连续的汗液乳酸监测数据、历史检测结果和智能预诊断结果;(b)自研制设计的集成信号处理单元的系统级框图,石墨烯晶体管信号转换和上传到智能手表和云服务器是通过微控制器STM32L4、高精度DAC/ADC电路和无线通信电路完成的;(c)借助ASED微流控模块和嵌入式Janus膜进行汗液自主富集和纯化的过程示意图;(d)说明NAD+/LDH功能化石墨烯晶体管在乳酸存在下的工作机制。石墨烯晶体管的照片(比例尺:2 mm)、石墨烯通道的SEM(比例尺:50 μm)和AFM(比例尺:5 μm)图像。

SIGN贴片对汗液乳酸检测性能表现

研究结果表明,该SIGN贴片对1 x PBS中0.5 ~ 400 mM浓度的乳酸展现出良好的检测性能,理论检出限可以低至0.31 mM。此外,在长期储存30天后,该贴片对乳酸浓度变化仍显示出较好的响应(信号响应偏差小于6.86%),并且贴片对0.5 ~ 400 mM浓度范围的乳酸正向浓度与反向浓度变化均具有积极响应,展现出良好的可重复利用性(重复使用50次后偏差小于6.2%)。

为了评估SIGN贴片在可穿戴应用中的汗液乳酸检测能力,在跑步锻炼期间对不同的志愿者进行了实时的体内汗液乳酸测量。跑步运动过程包括几分钟的热身,直到出汗,5分钟以5 ~ 6公里每小时的恒定速度慢跑,15分钟以10 ~ 11公里每小时的恒定速度跑步,10分钟以5 ~ 6公里每小时的恒定速率慢跑,以及10分钟的降温步行(3 ~ 4公里每小时)。志愿者在热身时出汗后,分别固定在志愿者不同身体部位(包括前额、颈部和背部)的设备可以同时记录数据。设备收集的数据通过蓝牙无线传输到用户界面,用于进一步分析。在慢跑运动中,随着跑步时间从0分钟增加到20分钟,归一化的前额附着传感器信号值急剧增加到5.37 μA,然后在接下来的10分钟内缓慢下降到0.46 μA。在10分钟的缓解过程中,归一化的传感器信号值继续缓慢下降,最终几乎保持在0.04 μA左右。颈部和背部的传感器也获得了类似的实验结果。这些数据证明了可穿戴SIGN贴片在跑步运动中持续监测汗液中乳酸的潜力。

为了更全面地评估SIGN贴片的性能,三名志愿者重复进行以下身体测试。首先,志愿者在脖子上戴上贴片,然后在户外(温度30℃)进行跳绳运动。分别在2000次和3000次跳跃(每500次跳跃休息1分钟)后检测汗液乳酸水平。此外,在相同的天气条件下,志愿者分别在以15 ~ 18公里每小时的速度骑行20分钟和30分钟后,或以10 ~ 11公里每小时的速度跑步8分钟和15分钟后进行汗液乳酸浓度检测实验,效果良好。可见,SIGN贴片在复杂的应用条件下,能够准确、可靠地区分汗液乳酸水平的变化。

c0708396-f619-11ee-a297-92fbcf53809c.jpg

图2 (a)用于无线数据通信的可穿戴SIGN贴片和腕戴智能手表;(b)SIGN贴片的电信号处理电路;(c)志愿者1在相应的锻炼活动后面部区域的红外照片;(d)Vds和Vg曲线;(e)志愿者背部、颈部和前额分别佩戴SIGN贴片,在40分钟跑步活动中实时监测汗液乳酸数据;(f)29 ~ 33岁不同志愿者在跑步、慢跑和骑自行车等各种运动活动中的人体汗液乳酸检测数据。

综上所述,该研究提出了一种微型可穿戴皮肤界面智能石墨烯纳米电子(SIGN)贴片,该贴片采用具有自主汗液采样和纯化能力的新型Janus膜集成表面润湿性可切换微流控模块,用于汗液生物标志物的原位分析。由于微流控表面的不对称表面能分布特性,实现了足够量的汗液到Janus膜的快速、定向传输。Janus膜净化汗液样本,并将样本自主输送到传感器表面,从而消除杂质干扰,提高传感性能。超柔性生物受体功能化石墨烯晶体管用于准确监测汗液生物标志物,如乳酸,具有出色的信号再现性和良好的长期(超过1个月)稳定性,以及与微流控模块结合的信号处理单元。在实际佩戴测试中,SIGN贴片能够连续测量志愿者在运动过程中的汗液乳酸水平,并成功地智能地对他们的运动强度进行初步诊断评估,这表明了其潜在的商业化前景。

论文链接: https://doi.org/10.1002/adfm.202400947



审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 晶体管
    +关注

    关注

    77

    文章

    9059

    浏览量

    135248
  • 电解质
    +关注

    关注

    6

    文章

    756

    浏览量

    19683
  • 石墨烯
    +关注

    关注

    54

    文章

    1514

    浏览量

    78610
  • PCB制造
    +关注

    关注

    2

    文章

    72

    浏览量

    15370
  • 生物传感器
    +关注

    关注

    12

    文章

    351

    浏览量

    37124

原文标题:智能石墨烯纳米电子贴片,具有自主汗液采样和净化功能

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    石墨电容

    的寿命长久,循环次数高达数千次,这意味着您可以长时间使用而无需担心更换问题。它的稳定性和可靠性,让您的设备始终保持最佳状态。 四、绿色环保,助力可持续发展 石墨电容作为一种绿色环保的储能元件,具有较低
    发表于 02-21 20:28

    用于情绪模式识别和非接触式人机界面皮肤适形透气湿度传感器

    湿度传感器作为一种基础型可穿戴电子器件,能够有效监测环境或人体皮肤表面的湿度变化。
    的头像 发表于 01-15 10:34 387次阅读
    用于情绪模式识别和非接触式人机<b class='flag-5'>界面</b>的<b class='flag-5'>皮肤</b>适形透气湿度传感器

    石墨烯基可穿戴传感器在医疗保健领域的应用

    石墨烯因具有重量轻、导电性能极佳的优势而备受世人瞩目,并被广泛应用于各种功能材料和智能器件中。由于市场需求的激增,可穿戴传感器已经广泛应用于众多领域,如运动检测、人工智能、假肢
    的头像 发表于 11-26 10:46 303次阅读
    <b class='flag-5'>石墨</b>烯基<b class='flag-5'>可穿戴</b>传感器在医疗保健领域的应用

    智能皮肤贴片和无创医疗感测

    如今的智能皮肤贴片可包含众多功能,采用混合印刷电子技术来增强医疗感测能力并改善患者治疗效果。 虽然蕴含着巨大潜力,但也存在复杂的设计挑战。 电子
    的头像 发表于 11-16 15:50 286次阅读
    <b class='flag-5'>智能</b><b class='flag-5'>皮肤</b><b class='flag-5'>贴片</b>和无创医疗感测

    高通发布新的PC芯片挑战苹果和英特尔,基于石墨烯的柔性可穿戴应变传感器研发

    传感新品 【中国民用航空飞行学院、西北工业大学:研发基于石墨烯的柔性可穿戴应变传感器】 随着人们对健康和生活质量的关注度日益提高,可穿戴技术作为一种引人注目的创新解决方案迅速崛起。利用
    的头像 发表于 10-26 08:43 323次阅读
    高通发布新的PC芯片挑战苹果和英特尔,基于<b class='flag-5'>石墨</b>烯的柔性<b class='flag-5'>可穿戴</b>应变传感器研发

    基于单片金纳米线逻辑电路的多功能智能可穿戴设备开发

    包括智能隐形眼镜、纺织品和贴片类型在内的多功能可穿戴设备已被广泛研究用于人机界面、医疗保健系统、远程医疗、增强现实(AR)和虚拟现实(VR)。
    的头像 发表于 10-08 09:11 720次阅读
    基于单片金<b class='flag-5'>纳米</b>线逻辑电路的多功能<b class='flag-5'>智能</b><b class='flag-5'>可穿戴</b>设备开发

    基于图案化水凝胶材料的多功能仿生电子皮肤

    电子皮肤类似于人体皮肤,它可以感知外界刺激获取环境信息,并将其转化为电信号,这项技术在软体机器人、假肢设计和可穿戴设备等领域备受关注。随着新型可穿戴
    的头像 发表于 09-06 09:24 549次阅读
    基于图案化水凝胶材料的多功能仿生<b class='flag-5'>电子</b><b class='flag-5'>皮肤</b>

    基于石墨烯的电子皮肤和人工智能在生物医学应用中的发展趋势

    电子皮肤(e-skin)能够模仿人类皮肤,是可穿戴技术不可或缺的一部分,已广泛应用于机器人、医疗保健等领域。
    发表于 08-27 17:41 639次阅读
    基于<b class='flag-5'>石墨</b>烯的<b class='flag-5'>电子</b><b class='flag-5'>皮肤</b>和人工<b class='flag-5'>智能</b>在生物医学应用中的发展趋势

    介绍一种可穿戴电子的柔性强韧水伏离子传感器

    由于构成水伏器件的功能化纳米材料间缺乏有效的绑定机制,严重制约了蒸发驱动的水伏效应在可穿戴传感电子领域的应用。
    发表于 08-24 09:25 232次阅读
    介绍<b class='flag-5'>一种</b><b class='flag-5'>可穿戴</b><b class='flag-5'>电子</b>的柔性强韧水伏离子传感器

    电子皮肤穿戴设备是什么 电子皮肤和显示皮肤区别是什么

    电子皮肤穿戴设备通常采用柔性的材料,如弹性聚合物、柔软的电子线路等,以确保舒适的贴合感和适应人体曲线。   电子
    的头像 发表于 08-22 14:54 1040次阅读

    中国科学院苏州纳米所:研发柔性水伏离子传感器用于可穿戴电子

      传感新品 【中国科学院苏州纳米所:研发柔性水伏离子传感器用于可穿戴电子】 由于构成水伏器件的功能化纳米材料间缺乏有效的绑定机制,严重制约了蒸发驱动的水伏效应在
    的头像 发表于 08-10 17:12 961次阅读
    中国科学院苏州<b class='flag-5'>纳米</b>所:研发柔性水伏离子传感器用于<b class='flag-5'>可穿戴</b><b class='flag-5'>电子</b>

    柔性电子皮肤的应用有哪些 柔性电子皮肤的优缺点有哪些

    柔性电子皮肤可以应用在柔性显示屏幕和可穿戴设备中,提供更舒适贴合的展示和操作界面,如灵活曲面显示器、可穿戴医疗设备等。
    发表于 07-05 16:06 1837次阅读

    什么是电子皮肤 可穿戴皮肤工作原理

    电子皮肤上搭载了各种传感器,用于感知不同的物理和化学信号。例如,压力传感器可以检测外界施加在皮肤上的压力变化,温度传感器可以测量环境温度,湿度传感器可以监测湿度水平,等等。
    发表于 06-29 16:52 2626次阅读

    浙大:3D打印石墨烯气凝胶微晶格,用于微型传感器和电子皮肤

    传感新品 【浙大:3D打印石墨烯气凝胶微晶格,用于微型传感器和电子皮肤】 3D打印石墨烯气凝胶因其柔韧性、低密度、导电性和压阻性而有望用于柔
    的头像 发表于 05-08 14:45 668次阅读
    浙大:3D打印<b class='flag-5'>石墨</b>烯气凝胶微晶格,用于<b class='flag-5'>微型</b>传感器和<b class='flag-5'>电子</b><b class='flag-5'>皮肤</b>

    青岛大学:防水抗菌活性的三维可穿戴压阻传感器,用于多模态智能传感

    和抗菌性能等先进参数没有得到足够的重视。研究利用石墨烯、银纳米粒子(Ag NPs)、聚氨酯(PU)和热塑性聚氨酯(TPU)制备了一种具有防水抗菌活性的三维可穿戴压阻传感器。 这款3D
    的头像 发表于 05-08 10:40 485次阅读
    青岛大学:防水抗菌活性的三维<b class='flag-5'>可穿戴</b>压阻传感器,用于多模态<b class='flag-5'>智能</b>传感