0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

利用超构表面增强的雷达近场传感,促进无创血糖监测等生物医学应用

MEMS 来源:MEMS 2024-04-03 09:09 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

目前,雷达系统已被研究用于多种生物传感应用,以捕捉与目标个体健康有关的特定生物信号。雷达系统能够以非接触形式表征一系列生物医学参数、检测紧急情况,提供出色的长期护理。过去十年间,业界已经开发出多款原型产品,展示了将人工智能AI)驱动的雷达系统用于无创葡萄糖传感、可穿戴汗液监测、多人生命体征跟踪、步态监测、跌倒检测、人眼活动监测以及成像等应用的潜力。

雷达系统面向工业和生物医学微波应用的开发近年有所加速,源于业界对毫米波通信的兴趣日益浓厚,这种通信技术可以利用超薄、低成本天线提供足够的人体穿透,实现近场传感。最近在同行评审期刊上发表的论文证明了一些紧凑型毫米波短距离雷达模块在生物医学应用中的实用性,例如血糖浓度水平检测、区分不同葡萄糖浓度的血液样本、乳腺癌检测、皮肤癌检测、用于血压跟踪的动脉脉搏波形测量以及高精度连续捕捉心肺位移波形等。

糖尿病以血糖水平升高为特征,是一种比较普遍的慢性疾病,凸显了早期检测和诊断的重要性。尽管已有侵入性血糖检测技术,但无创血糖测量技术越来越受关注,推动了持续的研究以及对新可能性的探索。尽管如此,无创血糖监测仍极具挑战,现有研究尚未开发出可靠的商业化产品或临床检测器械。已有报道提出了一种在2.4-2.5 GHz工业、科学和医疗(ISM)频段工作的便携式平面微波传感器,以促进对血糖水平的无创监测。还有报道采用强大的低功率毫米波雷达系统来检测人造血液样本中变化的葡萄糖浓度水平。另一种方法是在胰腺上方工作频率为4.2 GHz的天线传感器,以捕捉与葡萄糖水平相关的介质辐射信号。此外,还有研究开发了一种工作频率为1-6 GHz的微波生物传感器,用于实时无创葡萄糖监测。这些最新进展共同表明,人们越来越需要开发一种高灵敏度雷达系统,以实现对血糖水平的连续监测。

为了克服当前生物电子接口的局限性,可以设计具有亚波长结构的超构表面(metasurfaces)来控制人体周围的电磁场。通过利用阵列机制以及紧凑型馈电天线的设计兼容性,可将具有反射或透射功能的集成超构材料及结构用于近场传感,提供所需要的功能。通过广泛查阅文献,迄今还没有一种超构表面具有兼具超薄外形和高集成度的合适结构,尤其是在毫米波频段。这一缺憾阻碍了其与雷达传感器的集成,从而限制了其在近场生物医学应用中实现高精度传感的潜力。

据麦姆斯咨询介绍,鉴于特定的毫米波雷达芯片组和天线设计,以及预先确定的人体目标检测区域(如下图所示),加拿大滑铁卢大学(University of Waterloo)的研究人员通过在雷达发射/接收片上天线和人体皮肤之间集成一个平面透射超构表面作为缓冲器,提出了一种面向生物医学应用的雷达高近场传感方案。所提出的超构表面增强雷达近场传感方案,可以应用于多种生物医学传感领域,包括血糖监测、皮肤癌检测以及心脏和雷达心肺监测。本文重点关注了实时疾病诊断,特别强调了连续血糖监测在糖尿病诊断中的关键作用,旨在将血糖监测集成到可穿戴设备中,展示了所提出超构表面技术的专业用途。研究人员利用全波电磁模拟器评估了有无集成超构表面的雷达天线与人体皮肤模型直接接触时的近场传感性能。天线阻抗匹配、信噪比以及电磁场对人体皮肤的穿透,都是需要量化的性能参数。

这项研究成果已经以“Radar near-field sensing using metasurface for biomedical applications”为题发表于Communications Engineering期刊。

f1b60ea8-f114-11ee-a297-92fbcf53809c.jpg

贴近手腕部位整合超构表面技术,增强可穿戴雷达的近场传感性能

f1c60b46-f114-11ee-a297-92fbcf53809c.jpg

在自由空间和人体皮肤介质间设计的透射超构表面单元的比较分析

f1d475fa-f114-11ee-a297-92fbcf53809c.jpg

利用人体皮肤模型进行近场功率密度测量的雷达-超构表面集成

人体雷达传感器代表了生物医学传感的重大进步,能够对生命体征、血糖水平和健康指标进行连续、实时监测,从而提供早期诊断、改善治疗并最终挽救生命。本研究提出的超薄平面超构表面经过精心设计,具有阻抗匹配功能,可与雷达发射器和接收器天线无缝集成,便于与人体简化模型直接接触,进而大幅提高生物医学应用的近场传感性能。所提出超构表面之所以能够实现出色的雷达近场传感,关键在于增强了从雷达天线发射器到受控介质的功率密度吸收,同时雷达天线接收器提高了接收功率水平,从而提高了系统信噪比。具体来说,该超构表面的使用使近场坡印廷功率密度提高了11 dB以上。此外,通过雷达信号处理,分析表明雷达信噪比进一步提高了11 dB以上,从而增强了雷达的感知能力。

审核编辑:刘清
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 微波传感器
    +关注

    关注

    3

    文章

    22

    浏览量

    12951
  • 接收器
    +关注

    关注

    15

    文章

    2637

    浏览量

    76333
  • 缓冲器
    +关注

    关注

    6

    文章

    2215

    浏览量

    48688
  • 芯片设计
    +关注

    关注

    15

    文章

    1128

    浏览量

    56455
  • 毫米波雷达
    +关注

    关注

    108

    文章

    1144

    浏览量

    66008

原文标题:利用超构表面增强的雷达近场传感,促进无创血糖监测等生物医学应用

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    宾夕法尼亚大学:研究介电表面的偏振态折射率传感

    宾夕法尼亚大学Cherie R. Kagan团队提出了一种超越传统比色法的新型光学传感策略,他们通过设计具有特定结构各向异性的TiO₂介电表面,并
    的头像 发表于 11-11 15:20 548次阅读
    宾夕法尼亚大学:研究介电<b class='flag-5'>超</b><b class='flag-5'>构</b><b class='flag-5'>表面</b>的偏振态折射率<b class='flag-5'>传感</b>

    ATA-4315高压功率放大器:生物电刺激技术研究的高精度驱动核心

    生物电刺激技术在医学生物科学领域具有广泛的应用,包括神经科学研究、生物医学工程和康复医学。例
    的头像 发表于 10-13 11:21 208次阅读
    ATA-4315高压功率放大器:<b class='flag-5'>生物</b>电刺激技术研究的高精度驱动核心

    MATLAB 助力香港中文大学解决生物医学图像处理挑战

    Processing Toolbox™ 加速了生物医学图像处理工作流程。借助 MathWorks 的软件,研究人员高效地对万亿体素级别的图像进行了分割和分析,以往这些任务需要高端计算基础设施和大量手动编程
    的头像 发表于 08-28 15:07 435次阅读

    Holtek连续血糖监测仪应用方案介绍

    连续血糖监测仪(Continuous Glucose Monitor, CGM)用于持续监测体内组织液中的葡萄糖含量。与指尖采血测量方法不同,CGM通过在皮下植入传感器,能够提供连续、
    的头像 发表于 08-18 17:56 6022次阅读
    Holtek连续<b class='flag-5'>血糖</b><b class='flag-5'>监测</b>仪应用方案介绍

    血糖手表对比:橙子大健康 Watch D Pro VS 华为Watch 4

    与传统血糖仪相比,血糖手表最大的亮点在于无需采血,用户只需佩戴手表即可完成血糖监测,避免了疼
    的头像 发表于 08-12 18:22 1w次阅读
    <b class='flag-5'>无</b><b class='flag-5'>创</b><b class='flag-5'>血糖</b>手表对比:橙子大健康 Watch D Pro VS 华为Watch 4

    【硬核拆解】橙子大健康Watch D Pro如何实现血糖监测?技术原理大揭秘!

    今天我们要拆解的是这款“医疗级健康管家”橙子大健康WatchDPro。它不仅能血糖、测血压,还能精准监测血氧、心率、体温、睡眠状况
    的头像 发表于 08-05 15:33 2566次阅读
    【硬核拆解】橙子大健康Watch D Pro如何实现<b class='flag-5'>无</b><b class='flag-5'>创</b><b class='flag-5'>血糖</b><b class='flag-5'>监测</b>?技术原理大揭秘!

    深入剖析橙子大健康Watch D Pro血糖、测血压的技术原理

    最近,一款智能健康手表受到老年群体的热切关注,它就是橙子大健康WatchDPro。这款智能手表的核心功能有两个:血糖、血压监测。这两大核心功能可谓直击老年群体对健康
    的头像 发表于 07-08 17:10 2887次阅读
    深入剖析橙子大健康Watch D Pro<b class='flag-5'>无</b><b class='flag-5'>创</b>测<b class='flag-5'>血糖</b>、测血压的技术原理

    桂花网蓝牙网关物联网医院动态血糖管理应用案例

    生物:三诺生物是一家专注于慢性疾病检测领域的中国高新技术企业,以血糖监测系统为核心产品,是国内较早聚焦血糖
    发表于 06-05 16:17

    血糖+血压监测!橙子大健康Watch D Pro,真正的“腕上诊所”

    专注智慧健康服务的科技公司橙子大健康推出智能健康监测手表WatchDPro,其血糖血压监测的产品定位正是瞄准了健康监测这一市场。据介绍,这款手表对目前的健康
    的头像 发表于 06-03 16:05 2360次阅读
    <b class='flag-5'>无</b><b class='flag-5'>创</b>测<b class='flag-5'>血糖</b>+血压<b class='flag-5'>监测</b>!橙子大健康Watch D Pro,真正的“腕上诊所”

    高光谱相机在生物医学中的应用:病理分析、智慧中医与成分分析

    企业,深圳市中达瑞和科技有限公司依托自主研发的高光谱相机与光谱云平台,在生物医学领域实现了多项突破性应用。本文聚焦其在病理分析、病毒检测及成分分析中的核心价值与实践成果。 一、病理分析:精准诊断与效率提升 高光谱相机通过非侵入式成像,结合人工智
    的头像 发表于 04-24 11:25 521次阅读

    《FDTD Solutions仿真全面教程:表面与光束操控的前沿探索》

    )通过相位叠加螺旋相位模拟生成漩涡光 (五)表面的透过率/聚焦效率的分析 (六)不同偏振态的光入射下,验证传输型
    发表于 04-22 11:59

    维景”完成亿元B轮融资,加速全球化布局

    近日,国内专注于高端生物医学设备研发的领先企业“维景”宣布,公司已完成亿元的B轮融资。本轮融资由复健资本星未来基金、深投社保基金及其自有资金联合领投,同时建投投资有限责任公司也积
    的头像 发表于 02-14 09:44 1263次阅读

    Haydale石墨烯导电油墨:推动血糖监测技术的批量生产稳定性

    在智能医疗和健康管理领域,精准血糖监测对于生产血糖监测设备的企业至关重要。为了满足对血糖监测精度
    的头像 发表于 02-11 13:09 1137次阅读
    Haydale石墨烯导电油墨:推动<b class='flag-5'>血糖</b><b class='flag-5'>监测</b>技术的批量生产稳定性

    安泰:1600V高电压放大器生物研究超声测试怎么做

    的主要领域,以及高压放大器在生物研究超声测试中的应用。 生物超声研究的主要领域 1.超声成像 超声成像是一种医学成像技术,
    的头像 发表于 01-22 11:11 635次阅读
    安泰:1600V高电压放大器<b class='flag-5'>生物</b>研究超声测试怎么做

    雷达(电波)流速仪:精准测量,实时监测水流的表面流速

    雷达(电波)流速仪以其精准测量、实时监测的优势,在水流表面流速监测领域展现出卓越的性能和广泛的应用前景。
    的头像 发表于 12-12 09:45 1133次阅读
    <b class='flag-5'>雷达</b>(电波)流速仪:精准测量,实时<b class='flag-5'>监测</b>水流的<b class='flag-5'>表面</b>流速