0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

MPS | Buck电路的功耗那些事儿

江师大电信小希 来源:江师大电信小希 作者:江师大电信小希 2024-03-22 13:36 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

导言

DCDC转换电路的设计过程中,我们常常会需要知道转换电路在某个特定工作状态时功率的损耗。

比如通过待机状态的损耗来确定电路对待机时长的影响,通过稳态情况的损耗来确定设备温升情况,以及大电流情况下的损耗来确定电路的极限工作能力。

而弄清楚转换电路中损耗的来源以及如何去计算,便成了我们在优化功耗设计时不可或缺的内容。

本期内容

今天我们将通过对Buck电路中损耗的分析和计算,带大家初步了解DCDC电路中的损耗是如何产生的,以及如何针对不同工作状态去减小电路的损耗。

0

1

同步整流Buck电路

Buck电路通常由输入电容、开关管、续流管、电感、输出电容以及反馈控制电路组成,而续流管又分为被动的续流二极管和主动的同步整流开关管,这两种情况对于损耗的影响是不同的。

在如图所示的同步整流Buck电路工作过程中,N MOSFET Q1持续地(找元器件现货上唯样商城)开通和关断,电源和电容提供的输入电流断续流过Q1,在Q1关断期间,由于电感电流不能突变,所以需要打开N MOSFET Q2为其主动续流维持电感输出电流。

wKgaomX9GLKACWRSAACc4jpxqsU631.png

图1:同步整流Buck电路

因为MOSFET 存在导通电阻,在导通阶段流过电流会产生损耗,称之为导通损耗,计算时由于上下管交替导通以及各自导通电阻的差异,需要分别计算其导通损耗。

类似的,电流流经电感L 时也会由于电感的直流导通电阻而产生导通损耗,在电感电流纹波很小可以忽略的情况下,电感电流等于Buck电路输出电流,电感还会存在磁芯损耗,在磁芯为铁氧体材质时,磁芯损耗可忽略不计,具体计算可参考电感厂家提供的应用手册。

在具有电流反馈的Buck电路中,还会存在采样电阻 Rsense,其值通常为数毫欧,也会有不可忽略的导通损耗。

在同步整流Buck电路中,由于开关管交错导通且存在开关时间,在某个开关管打开之前,若未完全关断另一个开关管,两管就会直通,这时轻则损耗变大,重则烧毁电路。

wKgZomX9GLKADqa5AAAvAUHfQ4M795.png

图2 开关管交错导通

为了完全错开两管的开关过程,便在驱动逻辑上增加了死区时间。在死区时间内,两个MOSFET均关闭,电感电流不能突变,便只得从续流MOSFET Q2的体二极管中流过,但由于体二极管正向导通压降的存在,也形成了一定的导通损耗。

wKgaomX9GLOAB6RkAAArg9v-KRQ026.png

图3 PWM死区

0

2

非同步整流Buck电路

在非同步整流的Buck电路中,MOSFET Q2 被二极管 D1所替代,所以在电感续流期间,续流开关管的导通损耗便变成了二极管正向导通压降所带来的损耗。

wKgZomX9GLOARUqpAACNbcNQDI0397.png

图4 非同步整流Buck电路

在MOSFET Q1 开通过程中,续流二极管D1逐渐反向恢复,而反向恢复先要释放掉续流期间正向导通时储存的电荷,这里也会形成一定的损耗,反向截止电压较低时该损耗通常较小可忽略。

0

3

导通损耗和反向电容损耗

导通损耗和反向电容损耗计算公式如下:

wKgaomX9GLSARFGiAADLTln95cI800.png


0

4

MOSFET的开关损耗

回到我们的同步整流Buck电路中,有同学可能会提出疑问了,MOSFET 是电压型器件为什么也需要电流才能导通呢?

这是因为MOSFET 由于结构的原因不可避免的存在寄生电容,为了使 MOSFET 达到导通条件,也就是栅极电压Vgs超过某一阈值,必须通过栅极向这些寄生电容充电,这也就形成了驱动电流,同时为驱动电路提供瞬态电流的VCC电容和自举电容的容量有限,过大的驱动电流会引起不可接受的电容电压跌落,造成驱动电压下降或者控制芯片工作异常,需要通过电阻来限制这个充电电流,所以实际上MOS的导通是需要一定时间的。

wKgZomX9GLSAVymrAABtRYmf5qM677.png

图5 Mosfet导通栅极电压曲线

导通期间,MOSFET 漏极电压 Vds与漏极电流 Id重合,产生开通损耗。

wKgaomX9GLWAPkTWAABT7vhL_HU794.png

图6 MOSFET导通开关损耗

类似的,MOSFET 关断期间产生关断损耗。需要注意的是,由于死区时间的存在,续流MOSFET Q2 在开通和关断之前,Vds电压均已接近0V其开关损耗可忽略不计,即零电压开关。

同时,给MOSFET 寄生电容充的电在关断期间通过栅极驱动电路流向地,所以这部分电量也损耗掉了,称其为驱动损耗。

wKgaomX9GLWAWbQcAAAVAl81WEM680.png

图7MOSFET关断释放电荷

0

5

开关损耗和驱动损耗

开关损耗和驱动损耗计算公式如下:

wKgaomX9GLWAPIcxAABQg7PkIIE297.png

06

VCC转换器损耗

开关管N MOSFET Q1的驱动电路由控制芯片中的VCC转换器供电,VCC转换器通常为线性稳压器,存在较大效率损失,同时由于上管源极电压浮动,需要自举电路提供浮动驱动电压,此处存在一定效率损失。

开关管N MOSFET Q2,类似,但无自举电路损耗。逻辑电路和放大器等的损耗可以由芯片静态电流Iq计算。

VCC转换器损耗计算公式如下:

wKgZomX9GLaAB5yqAABG1ZnZGU0847.png

07

案例计算

下面以MP9928同步整流控制芯片为例,计算其Demo板 12V转5V 521kHz FCCM模式时的工作效率。我们可以在手册中找到芯片的原理框图,结合功能描述,发现其内部VCC转换器存在两种供电方式,这里按从芯片电源输入端IN 供电的方式计算芯片的损耗。

wKgZomX9GLaAE3jNAALEnZ3_yPo823.png

图8 MP9928 VCC电源路径

计算损耗所需要的公式如下,由于上下管 MOSFET 参数一致,可以对计算公式进行化简:

wKgaomX9GLeAEJkOAACMjzs4SM0328.png

从手册中找到计算所需的栅极驱动电源电压、芯片静态电流、死区时间。

wKgZomX9GLeAdRMhAAO04VA5cqs962.png

图9 MP9928 芯片参数

通过浏览EV9928的手册查得其所用 MOSFET 、电感、采样电阻的型号,再浏览其对应的手册,获得对应栅极驱动电压和漏极电源电压情况下MOSFET的导通电阻Rds(on)和栅极驱动电荷Qg以及电感的直流导通电阻Rdc。

wKgaomX9GLiAC76lAAHNjxr4DqQ320.png

图10MOSFET栅极电荷和导通电阻

wKgZomX9GL2AahZbAAAoKCyFTRw151.png

图11 电感直流导通电阻

MOSFET实际的开关时间需要在电路中测试,此处选用MOSFET手册中数据作为参考。

wKgaomX9GL6AAkScAABO-qIyP_E870.png

图12MOSFET开关时间

08

效率计算结果分析

MP9928 评估板的效率计算结果与真实条件下的测试结果对比如下:

wKgZomX9GL6AWamcAACoWqEa3AI567.png

图13 EV9928效率曲线

可以发现计算的出来的效率略高于测试结果,可能是因为损耗导致的发热进一步影响了器件的参数,但总体来说结果具有较高可信度。

若需进一步分析非线性参数对损耗的影响,可以参考MPS电源小课堂往期视频《合适的比例,让效率曲线更加完美》。

分析计算结果中各损耗来源所占百分比:

wKgaomX9GL-AJ-ASAAD-24XZ9uw149.png

图14 EV9928损耗来源

可以发现轻载时的损耗主要来源于芯片内部转换电路损耗以及MOSFET驱动损耗,而重载时主要来自于MOSFET、电感、采样电阻等的导通损耗、以及MOSFET的开关损耗和死区时间内下管体二极管续流时的损耗。

09

工作状态对效率的影响

进一步对MP9928 评估板进行效率测试:

wKgZomX9GMCALL48AAEvyTCOuro708.png

图15 EV9928不同工作模式下的效率曲线

可以发现开关导致的驱动损耗,主要影响轻载效率,开关频率对轻载效率影响较大,和计算结果推算一致。

10

关于提升Buck电路效率的建议

对于大多数 MPS Buck 稳压器,高侧MOSFET、高侧MOSFET驱动器、低侧MOSFET、低侧MOSFET驱动器(仅用于同步 Buck 变换器)、 VCC Regulator、逻辑和控制电路集成在一个芯片中。因此,选择开合适的开关频率、低侧二极管(仅用于非同步Buck变换器)以及电感是降低功率损耗的关键。通常给出以下建议:

开关频率越高,开关损耗越大。选择合适的频率可以优化开关损耗和大小。

低侧 MOSFET (仅适用于同步转换器):对于高输出电流应用,推荐使用低 Rds(on) 的 MOSFET来降低低端 MOSFET的导通损耗。对于高输入电压应用,推荐使用低 Qg 的 MOSFET来降低 Vcc Regulator损耗。

选择较小Ciss、Crss、Qg等寄生参数的高侧MOSFET来减少开关损耗,其Rds(on)可以比低侧MOSFET大。

续流二极管(只适用于非同步转换器):为了减少续流二极管的导通损耗,建议采用低正向导通电压二极管;选择反向恢复速度快的二极管,减小反向恢复损耗。

建议采用低直流电阻的电感器,以减少电感器的导通损耗

经过上面的学习,相信工程师朋友们已经对Buck电路的功耗来源和计算有了大致的了解。

优化功耗设计,在这个能源问题日益突出的环境里,也变得愈加重要。通过选择合适的架构、器件和参数,可以让我们每个工程师都能参与其中,为能源节约贡献出一份力,你做好准备了吗?

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电路
    +关注

    关注

    173

    文章

    6063

    浏览量

    177444
  • MOSFET
    +关注

    关注

    150

    文章

    9411

    浏览量

    229486
  • BUCK
    +关注

    关注

    32

    文章

    490

    浏览量

    67556
  • 功耗
    +关注

    关注

    1

    文章

    837

    浏览量

    33100
  • MPS
    MPS
    +关注

    关注

    26

    文章

    314

    浏览量

    68042
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    MPS Buck芯片推动车载ADAS系统技术创新

    MPS MP4423GQ 是一款通过 AEC-Q100 认证的车规级同步降压转换器,支持 4.5V–36V 宽输入电压和 3A 持续输出电流,其集成高效同步整流架构与完备保护功能,采用紧凑 QFN 封装。
    的头像 发表于 11-07 09:48 261次阅读
    <b class='flag-5'>MPS</b> <b class='flag-5'>Buck</b>芯片推动车载ADAS系统技术创新

    实战拆解BUCK电源滞回电路

    BUCK 电源设计中,MOS 管的 “快开快关” 是减少损耗的关键,而实现这一需求的核心,离不开前级驱动与滞回比较器的精妙配合。今天我们就从电路搭建到参数计算,手把手教你搞定 BUCK 电源的滞回
    的头像 发表于 10-16 11:03 2117次阅读
    实战拆解<b class='flag-5'>BUCK</b>电源滞回<b class='flag-5'>电路</b>

    详解MPS ACDC创新电源解决方案

    前不久,MPS ACDC 产品总监Peter Huang在北京举办的新品发布会上为大家分享了MPS ACDC 产品的市场优势及其最新技术进展,同时揭晓了MPS在当今热门的手机、笔记本电脑等便携式设备
    的头像 发表于 10-15 14:12 2419次阅读
    详解<b class='flag-5'>MPS</b> ACDC创新电源解决方案

    BUCK 电路的负压输出方案

    输入输出电压压差大的情况下,开关电源相比于LDO,在转换效率方面有着更为突出的优势。前面已经提到,正压 Buck 电路有专用的芯片,非常容易实现,而负压的 Buck 电路却并没有专用的
    发表于 03-06 10:47

    BUCK电路分析

    本帖最后由 嗳唱歌de图图 于 2025-2-26 14:42 编辑 Buck 电路又称为串联开关稳压电路,或降压斩波电路Buck
    发表于 02-26 14:39

    影响BUCK电路占空比稳定性的因素

    BUCK电路,也称为降压转换器,是一种直流-直流转换器,用于将输入电压降低到较低的输出电压。占空比(Duty Cycle)是BUCK电路中的一个重要参数,它定义了开关元件(通常是MOS
    的头像 发表于 12-12 17:14 2716次阅读

    BUCK电路占空比在电池管理系统中的应用

    电池管理系统(Battery Management System,简称BMS)是电动汽车和储能系统中的关键组件,负责监控、保护和延长电池的使用寿命。BUCK电路作为一种常用的DC-DC转换器,其
    的头像 发表于 12-12 17:13 2031次阅读

    不同控制方式下BUCK电路占空比比较

    BUCK电路中,占空比是一个关键参数,它决定了输出电压的大小。不同的控制方式会对BUCK电路的占空比产生不同的影响。以下是对几种常见控制方式下BU
    的头像 发表于 12-12 17:11 1888次阅读

    BUCK电路占空比与开关频率的关系

    BUCK电路占空比与开关频率是两个紧密相关的参数,它们在电路的性能和效率方面起着至关重要的作用。以下是对这两者关系的分析: 一、定义与基本原理 占空比 : 占空比是指开关器件(如晶体管或MOSFET
    的头像 发表于 12-12 17:01 4751次阅读

    如何有效提高BUCK电路占空比的方法

    BUCK电路,也称为降压转换器,是一种直流-直流转换器,用于将输入电压降低到较低的输出电压。占空比(Duty Cycle)是BUCK电路中的一个重要参数,它定义为开关元件导通时间与整个
    的头像 发表于 12-12 16:58 2044次阅读

    BUCK电路占空比在电源设计中的应用

    BUCK电路占空比在电源设计中具有至关重要的应用,它直接影响电源的输出电压、效率、稳定性以及热管理等多个方面。以下是对BUCK电路占空比在电源设计中应用的分析: 一、占空比对输出电压的
    的头像 发表于 12-12 16:57 2469次阅读

    如何选择BUCK电路的占空比 BUCK电路占空比对热管理的影响

    如何选择BUCK电路的占空比 选择BUCK电路的占空比是一个涉及多个因素的综合决策过程,以下是一些关键因素和步骤: 确定输入输出电压 : 首先,需要明确
    的头像 发表于 12-12 16:49 1682次阅读

    BUCK电路占空比与输出电压关系

    BUCK电路是一种常见的降压型直流-直流(DC-DC)变换器,在BUCK电路中,占空比与输出电压之间存在密切的关系。以下是对这种关系的介绍: 一、占空比的定义 在
    的头像 发表于 12-12 15:45 5200次阅读

    BUCK电路占空比对转换效率的影响

    BUCK电路(DCDC开关型降压电路)的占空比对转换效率具有显著影响。以下是对这种影响的分析: 一、占空比的定义与计算 占空比(Duty Cycle)是开关电源电路中开关管导通时间T_
    的头像 发表于 12-12 15:39 4436次阅读

    如何调整BUCK电路的占空比 BUCK电路占空比优化技巧

    调整BUCK电路的占空比是控制其输出电压的关键步骤。占空比指的是开关周期中开关关闭时间和开启时间的比例。以下是一些调整和优化BUCK电路占空比的方法和技巧: 一、调整占空比的方法 改变
    的头像 发表于 12-12 15:35 2780次阅读