0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

浅析推动生命科学发展的光泵半导体激光(OPSL)技术(一)

jf_64961214 来源:jf_64961214 作者:jf_64961214 2024-01-30 06:30 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

在生命科学领域,光泵半导体激光器 (Optically Pumped Semiconductor Lasers, OPSL)这一颠覆性技术已经被广泛使用。相较于传统的气体激光器,OPSL激光器具备高性能、高可靠性、低使用成本等优势。

▼ 应用背景要求

数十年来,可见光和紫外光连续激光器已在医学诊断、生物成像和其他生命科学应用领域的各种仪器中得到广泛应用。典型的应用实例包括流式细胞仪、共聚焦显微镜、高通量基因测序、病毒检测等。不同应用采用的技术不同,且有不同的操作原理,但它们对自身激光源有着极其相似的要求:

● 良好的空间模式质量

● 低噪声

● 高指向稳定性

在实际使用中,尤其对OEM制造商而言,更具优势的激光源要求:

● 长使用寿命

● 高可靠性

● 设备间良好一致性

● 较低的使用成本

流式细胞术、高通量基因测序、病毒检测等

这些应用领域中最早采用气体激光器作为激光源,特别是离子激光器和氦氖激光器,后为半导体激光器和固态激光器所取代。虽然这几类激光器都能满足生命科学应用领域对激光源的基本要求,但在能耗、波长输出、实际使用时的限制等方面都存在明显的不足。OPSL激光器的低能耗、波长可扩展等特点完美的解决了这些问题。

▼ OPSL技术原理

在OPSL中,增益介质是一块大面积的半导体 VCSEL芯片。这是一种单片 Ill-V 族半导体芯片,包括量子阱结构和DBR(分布式布拉格反射器)。量子阱结构经过特殊设计,用于高效吸收泵浦光并发射激光,而它下方的DBR是另一种半导体结构,可以对OPSL特定的输出波长进行优化,损耗低。

wKgZomW4JuqAPJfeAAJ30X-52K4186.jpg

泵浦光由一个或多个半导体二极管激光器提供,泵浦VCSEL增益芯片,产生的红外激光输出经输出耦合器上的二向色薄膜反射,然后透过倍频晶体,经后腔镜反射,形成谐振腔;而红外激光经过倍频晶体产生可见光激光经输出耦合器输出并离开激光腔。当需要紫外光输出时,在腔内加入另一种晶体,通过在 OPSL 腔内三倍频晶体来产生紫外光。OPSL 的腔内倍频效率高,这让其成为实现谐波波长扩展的理想选择。

OPSL 的输出波长由增益芯片中的量子阱结构决定,可设定为近红外光谱中的任意波长。然后,通过高效的腔内倍频(二倍频或三倍频)技术可以将输出波长转换为可见光或者紫外光输出。整个可见光谱和紫外光范围内。此外,可以通过增加泵浦光功率来提高 OPSL 输出功率。因此,OPSL技术在波长和功率方面都具有很好的可扩展性,使其成为一个能够高度迎合未来需求的激光技术平台。

wKgaomW4JuqAdzi2AAF-flTVp88142.jpg

▼ OPSL优势

OPSL具有灵活可调的波长、可扩展的功率、高效的倍频转换、优异的光束质量等多种优势, 无论是在使用成本、可靠性和使用寿命等方面都极具竞争力。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    336

    文章

    29977

    浏览量

    258193
  • 激光
    +关注

    关注

    21

    文章

    3578

    浏览量

    69091
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    NVIDIA技术推动化学和材料科学发展

    NVIDIA Holoscan 推动实时纳米成像技术取得突破性进展,NVIDIA ALCHEMI 促进先进材料和冷却技术的发现。
    的头像 发表于 11-25 10:45 405次阅读

    【「AI芯片:科技探索与AGI愿景」阅读体验】+半导体芯片产业的前沿技术

    半导体芯片是现在世界的石油,它们推动了经历、国防和整个科技行业。-------------帕特里克-基辛格。 AI的核心是系列最先进的半导体芯片。那么AI芯片最新
    发表于 09-15 14:50

    2025施耐德电气电子及生命科学新质生产力峰会成功举办

    智能制造技术、绿色厂房建设、企业出海及可持续发展等热门话题,助力电子与生命科学行业培育新质生产力、锻造竞争新优势。
    的头像 发表于 07-15 10:12 654次阅读

    施耐德电气助力生命科学行业数字化转型

    2025,生命科学行业的数字化转型趋势在何处?企业正面临哪些转型难点?
    的头像 发表于 07-02 09:53 568次阅读

    从原理到应用,文读懂半导体温控技术的奥秘

    和精度能够满足模块在不同工况下的性能检测要求,在光通讯行业的温控应用中发挥作用。 依托帕尔贴效应这一科学原理研发的高精度半导体温控产品,通过多样化的产品配置,在各领域的温控环节中发挥作用。从电子元件
    发表于 06-25 14:44

    超短脉冲激光加工技术半导体制造中的应用

    随着集成电路高集成度、高性能的发展,对半导体制造技术提出更高要求。超短脉冲激光加工作为种精密制造技术
    的头像 发表于 05-22 10:14 1162次阅读
    超短脉冲<b class='flag-5'>激光</b>加工<b class='flag-5'>技术</b>在<b class='flag-5'>半导体</b>制造中的应用

    AI在医疗健康和生命科学中的发展现状

    NVIDIA 首次发布的“AI 在医疗健康和生命科学中的现状”调研,揭示了生成式和代理式 AI 如何帮助医疗专业人员在药物发现、患者护理等领域节省时间和成本。
    的头像 发表于 04-14 14:10 736次阅读

    西门子51亿美元收购Dotmatics 加码AI生命科学赛道

    德国工业巨头西门子已同意以51亿美元收购Dotmatics,作为向生命科学公司提供更多人工智能软件战略举措的部分。 这家德国企业在周三发布的份声明中宣布了对这家由Insight Partners
    的头像 发表于 04-03 17:37 520次阅读

    IBM Spectrum LSF在生命科学和生物制药领域的应用

    随着基因测序技术的突破、蛋白质组学,分子动力学研究的深入以及 AI 技术的崛起,生命科学与生物制药领域正经历前所未有的变革。
    的头像 发表于 03-06 09:25 803次阅读

    大功率半导体激光器阵列的封装技术

    半导体激光器阵列的应用已基本覆盖了整个光电子领域,成为当今光电子科学的重要技术。本文介绍了半导体激光器阵列的发展及其应用,着重阐述了
    的头像 发表于 03-03 14:56 1668次阅读
    大功率<b class='flag-5'>半导体激光</b>器阵列的封装<b class='flag-5'>技术</b>

    浅析半导体激光器的发展趋势

    文章综述了现有高功率半导体激光器(包括单发射腔、巴条、水平阵列和垂直叠阵)的封装技术,并讨论了其发展趋势;分析了半导体激光器封装技术存在的问
    的头像 发表于 02-26 09:53 1685次阅读
    <b class='flag-5'>浅析</b><b class='flag-5'>半导体激光</b>器的<b class='flag-5'>发展</b>趋势

    IBM Maximo助力生命科学行业合规远航

    明日之星”的 50家企业中,生命科学企业以 42% 的占比领先;从二级行业来看,生物技术/制剂占比位居榜首。
    的头像 发表于 02-18 09:17 936次阅读

    借助NVIDIA AI Foundry平台推动医疗健康与生命科学行业发展

    借助 NVIDIA AI Foundry,全球领先的临床研究与商业服务提供商 IQVIA 将为其全球生命科学领域的客户提供 AI 智能体,助力加速药物研发、数据管理及商业化等复杂工作流。
    的头像 发表于 01-17 09:59 1262次阅读

    科技发布LCS系列高功率半导体激光

    近日,全球领先的高功率半导体激光元器件及原材料、激光光学元器件、光子技术应用解决方案供应商炬科技,正式发布了LCS系列980/1470nm
    的头像 发表于 01-09 17:07 1163次阅读

    施耐德电气助力生命科学与电子行业的可持续发展

    在上期《行业·启施录》之中,施家智囊团与行业大咖们共同探讨了新质生产力时代下,生命科学与电子行业的机遇与挑战。
    的头像 发表于 12-09 10:02 762次阅读