0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

高次谐波在生命科学和材料化学中的应用

jf_64961214 来源:jf_64961214 作者:jf_64961214 2023-05-06 07:12 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

高次谐波产生的原理,可以简单的描述为:在强场激光的作用下,原子会发生多种电离现象(阈上电离,隧穿电子,越势垒电离);电子在脱离原子核后,成为自由电子,并在强场中加速,增加了电子势能;在特定力的作用下,又会以一定的概率返回母核,并辐射出高能谐波光子。

高次谐波不仅有重要的理论研究价值,而且还有重要的实用价值。

首先,利用高次谐波可以获得相干的,窄脉宽的,紫外和X射线源。这为生命科学,材料化学等的研究,提供了必不可少的工具。例如实验上已经获得了水窗波段的高次谐波辐射,(在水窗波段,2.3〜4.4nm,氧原子的吸收要比碳原子的小得多,所以这对于活的生物细胞和亚细胞结构的显微成像具有重大意义。同时,高次谐波辐射在需要时间和空间分辨的微观超快过程研究上,有着较多的应用,例如激光等离子体的论断,原子内壳层的光电子和双光子电离,材料科学和化学中的表面物理和化学研究,半导体的全息光刻,原子团簇的电子和几何结构研究等。

其次,高次谐波辐射是获得阿秒相干脉冲光源的首先。并且是突破阿秒光源。一旦突破阿秒界限,人类有可能实现原子尺度内时间分辨的梦想,如复杂分子中的电荷跃迁,分子中价电子的运动状态,等等。

高次谐波光源的特点

1.相干性好

2.深紫外波段

3.窄脉宽

相关设备

wKgaomRVjUyALbZGAABb9MZJXfs738.jpg



审核编辑黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 高次谐波
    +关注

    关注

    1

    文章

    12

    浏览量

    10345
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    Synthio Labs完成500万美元种子轮融资,打造生命科学领域客户互动语音人工智慧操作系统

    “我们相信Synthio Labs正在定义生命科学领域的新一代重要客户互动基础设施。他们的临床级语音人工智能平台统一了制药公司的沟通方式,为一线团队提供了强大的语音助手,并为医生和患者带来全天候即时
    的头像 发表于 11-21 15:56 113次阅读

    如何监测和分析电网谐波含量?

    监测和分析电网谐波含量需遵循 “明确目标→选对设备→科学监测→深度分析→应用落地” 的全流程,核心是通过高精度监测获取谐波数据,结合专业分析定位
    的头像 发表于 10-13 16:37 564次阅读

    2025施耐德电气电子及生命科学新质生产力峰会成功举办

    近日,以“破界新生,致电未来”为主题的2025施耐德电气电子及生命科学新质生产力峰会在杭州成功举办。施耐德电气携手行业专家、生态伙伴及客户,围绕产业数智化转型升级,聚焦全球领先的绿色能源管理、绿色
    的头像 发表于 07-15 10:12 650次阅读

    施耐德电气助力生命科学行业数字化转型

    2025,生命科学行业的数字化转型趋势在何处?企业正面临哪些转型难点?
    的头像 发表于 07-02 09:53 564次阅读

    AI在医疗健康和生命科学的发展现状

    NVIDIA 首次发布的“AI 在医疗健康和生命科学的现状”调研,揭示了生成式和代理式 AI 如何帮助医疗专业人员在药物发现、患者护理等领域节省时间和成本。
    的头像 发表于 04-14 14:10 736次阅读

    西门子51亿美元收购Dotmatics 加码AI生命科学赛道

    德国工业巨头西门子已同意以51亿美元收购Dotmatics,作为向生命科学公司提供更多人工智能软件战略举措的一部分。 这家德国企业在周三发布的一份声明宣布了对这家由Insight Partners
    的头像 发表于 04-03 17:37 520次阅读

    IBM Spectrum LSF在生命科学和生物制药领域的应用

    随着基因测序技术的突破、蛋白质组学,分子动力学研究的深入以及 AI 技术的崛起,生命科学与生物制药领域正经历前所未有的变革。
    的头像 发表于 03-06 09:25 803次阅读

    IBM Maximo助力生命科学行业合规远航

    近日,德勤发布的《2024国高科技成长 50强及明日之星报告》[1]指出,在所有高增长领域中,生命科学在近三年内比重逐年攀升,占比达到 36%,首次超越了软件与硬件行业,并位居榜首。在荣膺“中国
    的头像 发表于 02-18 09:17 935次阅读

    材料的哪些性质会影响扫描电镜下的成像效果

    图仪器扫描电镜通过加装各类探头和附件,满足用户的拓展性需求,这使其在材料科学生命科学、纳米技术、能源等多个领域得到了广泛应用。
    发表于 02-14 09:47 0次下载

    dac输出的2、3谐波是怎样造成的?

    dac 输出的2、3谐波是怎样造成的,有没有数学推导或相关文档。设计怎么样使其2、3
    发表于 02-10 08:02

    借助NVIDIA AI Foundry平台推动医疗健康与生命科学行业发展

    借助 NVIDIA AI Foundry,全球领先的临床研究与商业服务提供商 IQVIA 将为其全球生命科学领域的客户提供 AI 智能体,助力加速药物研发、数据管理及商业化等复杂工作流。
    的头像 发表于 01-17 09:59 1262次阅读

    安泰电压功率放大器:材料科学与工程学科研究的重要推手!

    材料科学与工程是一门涵盖广泛领域的学科,涉及固体物理学、化学、工程学等多个学科的交叉领域。 高压功率放大器 作为材料测试研究过程中常用的测试设备,具体能为研究做什么呢?电压、大功率、
    的头像 发表于 12-23 11:02 594次阅读
    安泰<b class='flag-5'>高</b>电压功率放大器:<b class='flag-5'>材料科学</b>与工程学科研究的重要推手!

    DAC的谐波为什么都会折叠回第一奈奎斯特区间?

    如题,在看到的DDS和DAC的资料上都会提到DAC内部的非线性造成的谐波会被折叠回第一奈奎斯特区间。不太理解的地方是DAC里并没有采样的过程啊?DAC只是一个乘以sin(x)/x和低通滤波
    发表于 12-11 07:05

    施耐德电气助力生命科学与电子行业的可持续发展

    在上一期《行业·启施录》之中,施家智囊团与行业大咖们共同探讨了新质生产力时代下,生命科学与电子行业的机遇与挑战。
    的头像 发表于 12-09 10:02 762次阅读