0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于超导单光子探测器的红外光学系统噪声分析和优化

MEMS 来源:红外芯闻 2024-01-08 09:40 次阅读

高灵敏度的红外探测系统对于远距离探测有巨大的潜力,但光学系统内部的噪声会抑制探测系统的信噪比,从而降低探测灵敏度与探测距离。

据麦姆斯咨询报道,近期,南京大学电子科学与工程学院超导电子学研究所和网络通信与安全紫金山实验室组成的科研团队在《物理学报》期刊上发表了以“基于超导单光子探测器的红外光学系统噪声分析和优化”为主题的文章。该文章第一作者为周飞,通讯作者为张蜡宝教授。

本文基于红外超导纳米线单光子探测器(SNSPD),设计了一个工作在中红外波段的光学系统,构建了红外光学系统自发辐射计算模型,理论分析了红外光学系统的信噪比和噪声特性。首次提出了利用高性能超导单光子探测器精确表征红外光学系统的微弱背景辐射光信号,为优化设计红外系统提供了依据。并且基于超导单光子探测器的光子计数能力,研究了光学系统的背景辐射对红外探测系统性能的影响,并优化了光学系统的性能。

红外SNSPD测量系统

制冷型红外探测系统具有灵敏度高、暗噪声低的优点,更加适用于远距离探测和背景辐射严重的场景探测。本文借助SNSPD的光子计数能力对光学系统的性能进行表征与分析。搭建的红外SNSPD的测量系统结构示意图如图1(a)所示,包含黑体源、光学系统、制冷机、SNSPD和电学读出部分组成。作为红外光源,黑体源采用的是MIKRON的M305红外光源,温度范围为100 - 1000℃。制冷机的三层窗口片均为在0.6 - 16 μm有较高透过率的硒化锌窗口片,制冷机结构由四层结构组成,为SNSPD提供可正常工作的超低温环境,四层制冷结构由外到内的温度分别为300 K、40 K、3 K和0.05 K。

SNSPD安装在制冷机的最内层0.05 K的制冷结构中,光敏区域的方向正对着窗口的方向。为减小能量损失,所有光学元件中心以及SNSPD的光敏区域的中心均在同一光轴上。黑体源被固定在气浮减震平台上以减小结构扰动带来的干扰,黑体辐射经过光学系统和四层窗口片后,聚焦耦合至SNSPD的光敏面上,SNSPD的光敏区域接收到光子后产生响应,并通过电学读出实现光子探测与光子计数。

c601d552-ad77-11ee-8b88-92fbcf53809c.jpg

图1 (a)红外SNSPD的测量系统结构示意图;(b)红外测量系统实物图

仿真分析与模型建立

高灵敏的红外探测系统可以具备很高的温度分辨能力,实现更加精密的热红外探测,相关探测灵敏度通常通过噪声等效温差(NETD)来表征。NETD象征着探测器能探测到的目标物体与背景之间的最小温差。若要提升探测系统的灵敏度,首先需要对探测系统的信噪比(SNR)和噪声特性进行分析。SNSPD通过光子计数率(PCR)来表征信号光的强度,PCR越大,信号光强度越大。背景计数率(BCR)用来表征背景辐射的强度。

黑体源产生的红外辐射在到达探测器光敏面之前,会经过光学系统和四层窗口片,故红外探测系统的自发辐射分为两部分,一部分是制冷机外部的光学系统带来的自发辐射,另一部分是制冷机窗口片带来的自发辐射。实验方案中的光学系统总共包含一个反射镜、一个耦合透镜和四层窗口片,本文以这六片镜片作为对象,建立光学系统自发辐射模型。

通过对光学系统中镜片的自发辐射的分析,得到了光学系统镜面自发辐射与红外探测光敏面上辐照度之间的关系,进而可以得到该红外SNSPD光学系统的自发辐射模型。

实验结果与分析

当温度变化ΔT时,NETD随着输出电压噪声的均方根的增大而增大,与ΔT内电压的变化量成反比。从提高红外探测系统的灵敏度出发,需要降低NETD的值,就需要降低NETD输出电压噪声的均方根,即降低光学系统的噪声对红外探测系统的影响,同时需要提高ΔT内输出电压的变化量,提高探测系统的信噪比。对于SNSPD而言,其光子计数能力对于定量的表征光学系统的噪声特性有着独特的优势。

如图1(b)所示为本方案的红外SNSPD空间测量系统实物图,黑体校准源出射口的直径大小为25.4 mm。黑体产生的红外光源经出射口到达反射镜,再经反射镜反射后经过透镜聚焦,并穿过四层窗口片后到达探测器的光敏区域。为保证光学系统的稳定性,从黑体源到制冷机最外层窗口之间采用25.3 mm的同轴光学系统。为了避免外界杂散辐射进入光学系统,本方案采用了可调节屏蔽套管来阻止外界杂散辐射的进入,从而确保BCR足够小。

本方案设计并制备了一个中红外SNSPD,器件采用双面抛光的硅衬底,并且在硅衬底上制备了一层MoSi超导薄膜,在超导薄膜上沉积了一层金作为SNSPD的电极,最终经过电子束曝光刻蚀出纳米线,图2(a)所示为该SNSPD的纳米线区域在SEM扫描电镜下的观测图。所制备的SNSPD的光敏面的大小为10 μm×10 μm,电流-电压特性曲线如图2(b)所示,器件的超导临界电流为3.2 μA。

c67dc7ca-ad77-11ee-8b88-92fbcf53809c.jpg

图2 (a) SNSPD的SEM观测图(纳米线的线宽为30 nm);(b) SNSPD的电流-电压特性曲线

首先,利用SNSPD的光子计数能力表征了光学系统带来的背景辐射,当黑体源关闭时,偏置电流固定在2.79 μA,在5 min内观测光子计数情况如图3(a)所示,5 min内探测系统的BCR波动较小,均值为1.0×10⁵ cps,均方根σBCR为454 cps,BCR和σBCR以光子数的形式定量表征了光学系统自发辐射所产生的背景噪声及其抖动,结果表明该光学系统本征热辐射较小,与仿真分析较为吻合。

c6ea83ce-ad77-11ee-8b88-92fbcf53809c.jpg

图3 (a) 探测系统的BCR(200 s内的标准差为454 cps);(b) 不同温度下的PCR和ΔPCR

对于光子计数型探测器而言,BCR的值越大,表明探测系统中的噪声越大,因此,要想提高探测系统的灵敏度,就要提高探测系统的SNR,一来通过提高探测系统的PCR来提高ΔPCR的值,二来是通过降低BCR,减小光学系统由于自发辐射带来的噪声。为了提高PCR,首先要确保光学系统的出射口的黑体辐射光斑与SNSPD的光敏区域尽可能同轴,从而保证较高的空间耦合效率。

由于SNSPD安装在制冷机最内层,无法实时观测SNSPD与光学系统出射口的耦合情况,仅有窗口区域允许制冷机内部与外界进行通信。然而较低的耦合效率会带来较大的能量损失,导致PCR的降低,从而影响SNSPD探测系统的NETD。SNSPD的光子分辨能力可以通过光子数定量的表征辐射源与SNSPD的光敏区域的空间耦合的情况,通过微调光学平台来移动光学系统和制冷机窗口的位置,实时观测PCR的变化,在水平面上向一固定方向平移2 mm的移动范围内,如图4(a)所示。

由于黑体源出腔口的大小远远大于探测器光敏面的大小,所以即使通过微调光学系统出射口与制冷机窗口的相对位置使光源与SNSPD的光敏面同轴,也会存在大量红外辐射传播至探测器光敏面之外的位置,导致大量的能量损失。为降低能量损失,使更多的红外辐射到达探测器光敏面,需要使用聚焦透镜来缩小黑体辐射的光斑,使得红外辐射被尽可能地耦合至探测器光敏区域,从而提高PCR。

c75250b2-ad77-11ee-8b88-92fbcf53809c.jpg

图4 (a)和(b):温度分别为100 ℃和102 ℃时,2 mm移动范围内PCR的变化情况;(c)和(d):温度分别为100 ℃和102 ℃时,使用耦合透镜前后的PCR

为提升测量系统的SNR,除了提升PCR的数值,有效抑制BCR也尤为重要。在红外聚焦透镜的下方,利用两端长度可调节套管将其构成三明治结构,其中上层套管有两个作用,一来用于调节焦距,二来根据焦距调节聚焦透镜到制冷机窗口之间的长度,下层套管负责调节焦距和根据焦距调节聚焦透镜到反射镜的距离,从而确保光学系统的常温部分没有外界杂散辐射的引入。除了本文所采用的在常温部分通过屏蔽套管抑制外界杂散辐射外,制冷机内部设计也能大大降低BCR,可以通过在探测器前端增加一个效率为100%的冷阑,只允许探测目标的辐射通过该冷阑。还可以通过在制冷机最内层结构的内壁涂敷黑色金属图层,降低制冷机内部杂散辐射的干扰。

结论

SNSPD的光子计数能力是对红外光学系统噪声特性定量表征的一种新颖且重要的方式,对红外光学系统的发展具有重要的意义。本文理论分析了红外SNSPD光学系统的噪声的来源,并建立了基于SNSPD的红外光学系统的信噪比与背景辐射计算模型,首次提出了利用SNSPD表征红外光学系统的背景辐射强度,并且基于SNSPD的光子计数能力分析了SNSPD红外光学系统的性能与NETD和SNR的关系。实验表明SNSPD可识别的系统最小移动距离为2.74 × 10⁻² mm,并通过对光学系统的分析与优化,在黑体温度为100℃时,空间耦合效率提升了97%,信噪比提升了2.7倍,对高灵敏度的超导红外探测系统的研究具有一定的指导意义。







审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 信噪比
    +关注

    关注

    3

    文章

    233

    浏览量

    28328
  • SNR
    SNR
    +关注

    关注

    3

    文章

    182

    浏览量

    24046
  • PCR
    PCR
    +关注

    关注

    0

    文章

    116

    浏览量

    19444
  • 红外探测
    +关注

    关注

    0

    文章

    45

    浏览量

    10992
  • 单光子探测器

    关注

    1

    文章

    30

    浏览量

    4277

原文标题:基于超导单光子探测器的红外光学系统噪声分析和优化

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    光学系统设计过程

    任何一种光学仪器的用途和使用条件必然会对它的光学系统提出一定的要求,因此,在我们进行光学设计之前一定要了解对光学系统的要求。
    的头像 发表于 01-23 13:46 193次阅读

    Single Quantum超导纳米线单光子探测器最新应用进展

    超导纳米线单光子探测器(SNSPDs)是一种高效的光子检测设备,利用超导材料的特性来探测单个
    的头像 发表于 12-12 11:05 270次阅读
    Single Quantum<b class='flag-5'>超导</b>纳米线单<b class='flag-5'>光子</b><b class='flag-5'>探测器</b>最新应用进展

    浅谈空间光学系统内部的杂散辐射分析

    对于光学系统的杂光抑制能力,我们可采用点源透过率(PST)指标来评价。PST值越小,则光学系统的杂光抑制能力就越强,系统性能也越好。PST定义为:光学系统视场外的视场角为θ的点源目标辐
    的头像 发表于 11-07 10:25 378次阅读
    浅谈空间<b class='flag-5'>光学系统</b>内部的杂散辐射<b class='flag-5'>分析</b>

    红外光学系统抗干扰的主要方法

    ℃以下物体的细小温差进行分辨。要使红外系统在恶劣环境条件下始终获得稳定清晰的图像,除了电子学尽可能降低噪声外,光学系统往往要采取多种措施来抑制和降低这些干扰。
    的头像 发表于 09-26 09:20 833次阅读
    <b class='flag-5'>红外光学系统</b>抗干扰的主要方法

    中波红外长焦距折反光学系统设计

    摘要: 针对多模制导中长焦距红外光学系统结构紧凑及宽温度范围热稳定性的要求,设计了一种中波红外折反光学系统。该系统根据其它模式制导的要求,采用固定焦距和口径的主镜,通过二次成像,在保持
    的头像 发表于 09-11 10:07 342次阅读
    中波<b class='flag-5'>红外</b>长焦距折反<b class='flag-5'>光学系统</b>设计

    基于离轴成像光学系统的设计

              针对自由曲面能提升成像光学系统的性能和校正像差的特点,分析了自由曲面在离轴光学系统中的应用优势。光学系统选用视场角为30°×11°、焦距为150 mm、F数为3的C
    的头像 发表于 09-10 09:06 705次阅读
    基于离轴成像<b class='flag-5'>光学系统</b>的设计

    红外光学系统设计方案

    红外光学系统的基本功能是接收和聚集目标所发出的红外辐射并传递到探测器产生电信号。红外光学系统与普通(可见光)系统设计区别主要在应用的
    的头像 发表于 09-07 10:13 524次阅读
    <b class='flag-5'>红外光学系统</b>设计方案

    什么是红外焦平面探测器 红外焦平面阵列原理

    红外焦平面阵列是红外系统及热成像器件的关键部件,是置于红外光学系统焦平面上,可使整个视场内景物的每一个像元与一个敏感元相对应的多元平面阵列红外
    发表于 08-28 10:26 1554次阅读
    什么是<b class='flag-5'>红外</b>焦平面<b class='flag-5'>探测器</b> <b class='flag-5'>红外</b>焦平面阵列原理

    同轴折反式变形光学系统设计方法 变形光学系统的结构及像差特性

    摘要 :变形光学系统具有双平面对称性,其在两个对称面内的焦距不同。利用变形光学系统能够在使用常规尺寸传感器的情况下获得更宽的视场。本文根据变形光学系统的一阶像差特性,提出了一种设计折反式变形
    的头像 发表于 07-31 15:15 568次阅读
    同轴折反式变形<b class='flag-5'>光学系统</b>设计方法 变形<b class='flag-5'>光学系统</b>的结构及像差特性

    红外探测器:热探测器光子探测器

    红外探测器红外热成像技术领域的核心器件,其主要用于检测物体发出的红外辐射。按照探测器原理不同,红外
    的头像 发表于 07-19 17:12 1380次阅读
    <b class='flag-5'>红外</b><b class='flag-5'>探测器</b>:热<b class='flag-5'>探测器</b>与<b class='flag-5'>光子</b><b class='flag-5'>探测器</b>

    短波红外光子探测器的发展

    光子探测器达到了光电探测的极限灵敏度,InP/InGaAs 短波红外光子探测器 (SPAD)
    发表于 06-28 09:31 593次阅读
    短波<b class='flag-5'>红外</b>单<b class='flag-5'>光子</b><b class='flag-5'>探测器</b>的发展

    光学系统的基本特性

      任何一种光学仪器的用途和使用条件必然会对它的光学系统提出一定的要求,因此,在我们进行光学设计之前一定要了解对光学系统的要求。这些要求概括起来有以下几个方面。 一、
    的头像 发表于 06-14 10:17 1181次阅读

    光学系统设计流程

      引言 实际光学系统的成像是不完善的,光线经光学系统各表面传输会形成多种像差,使成像产生模糊、变形等缺陷。像差就是光学系统成像不完善程度的描述。光学系统设计的一项重要工作就是要校正这
    的头像 发表于 06-13 09:41 621次阅读
    <b class='flag-5'>光学系统</b>设计流程

    基于硅锗材料低成本中波红外光学系统无热化设计

    光学成像末制导系统中,制冷红外光学系统具有成像质量好、探测精度高、抗干扰能力强和可全天时工作等突出优点。但由于弹载环境极端恶劣,需确保光学系统
    的头像 发表于 06-06 14:39 583次阅读
    基于硅锗材料低成本中波<b class='flag-5'>红外光学系统</b>无热化设计

    基于ZEMAX设计的宽光谱可见-短波红外成像光学系统

    光学系统结构的选择与该系统的应用场景密切相关,在机器视觉领域中,短波红外波段的成像系统往往具有大视场、小畸变和成像质量稳定的特点。合理地选择光学系统
    发表于 05-08 17:47 1125次阅读
    基于ZEMAX设计的宽光谱可见-短波<b class='flag-5'>红外</b>成像<b class='flag-5'>光学系统</b>