0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

不同氮化镓蚀刻技术的比较

jf_01960162 来源:jf_01960162 作者:jf_01960162 2023-12-01 17:02 次阅读

引言

GaN作为宽禁带III-V族化合物半导体最近被深入研究。为了实现GaN基器件的良好性能,GaN的处理技术至关重要。目前英思特已经尝试了许多GaN蚀刻方法,大部分GaN刻蚀是通过等离子体刻蚀来完成的,等离子体刻蚀的缺点是容易产生离子诱导损伤,难以获得光滑的刻蚀侧壁。为了更好地控制表面粗糙度,英思特采用了一种称为数字蚀刻的技术来进行研究。

实验与讨论

我们通过选择PEC二元GaN刻蚀方法来进行实验。利用二元蚀刻不需要复杂的设备,可实现更好的控制和精度。同时利用二元蚀刻不需要外部刺激以及任何的电极,可以在室温或更高的温度下进行实验。

所有的GaN膜通过LED掩模图案化,然后使用电子束沉积在GaN膜上沉积200 nm的Ni层,在Ni剥离之后,图案化的GaN膜留下Ni和GaN膜。

图1显示了本征GaN、n-GaN和p- GaN膜的蚀刻速率(单位为nm/周期)与从室温25℃到75℃的温度的关系。循环总共需要大约2分钟(30秒的5% K2S2O8,30秒的KOH和60秒的去离子水)。我们通过数字化的方式完成了实验,并且没有使用可以明显提高化学反应速率的紫外线光源,因此,基本上我们有意降低GaN蚀刻速率,以实现更好的表面粗糙度控制。

wKgZomVpoFGADkacAAA_SCYwBvc963.png图1:氮化镓K2S2O8/KOH二元蚀刻速率与温度的关系

在75℃下,由于更高的掺杂浓度和更多的缺陷,这使得初始蚀刻更容易开始,因此n-GaN具有最高的蚀刻速。

我们还使用AFM进行表面拓扑和粗糙度测量。GaN二元蚀刻前后的GaN表面的AFM图像如图2所示。

wKgaomVpoKKAIXALAALFA6bFzqw273.png图2

上面的AFM图像是通过接触式AFM扫描拍摄的,X和Y方向是扫描区域,Z方向显示表面粗糙度。AFM图像显示在GaN蚀刻之前GaN表面是光滑的,这证明了我们的MOCVD生长技术。

结论

英思特分别在室温和高温下,通过蓝宝石上的本征GaN、n掺杂GaN和p掺杂GaN膜上成功地进行了K2S2O8/KOH二元蚀刻。我们通过实验发现蚀刻速率相对较低,但是可以高精度地控制表面粗糙度。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    328

    文章

    24520

    浏览量

    202178
  • 晶圆
    +关注

    关注

    52

    文章

    4527

    浏览量

    126445
  • 氮化镓
    +关注

    关注

    53

    文章

    1502

    浏览量

    114907
  • GaN
    GaN
    +关注

    关注

    19

    文章

    1766

    浏览量

    67994
  • 蚀刻工艺
    +关注

    关注

    2

    文章

    51

    浏览量

    11677
收藏 人收藏

    评论

    相关推荐

    氮化发展评估

    `从研发到商业化应用,氮化的发展是当下的颠覆性技术创新,其影响波及了现今整个微波和射频行业。氮化对众多射频应用的系统性能、尺寸及重量产生
    发表于 08-15 17:47

    MACOM:硅基氮化器件成本优势

    ,尤其是2010年以后,MACOM开始通过频繁收购来扩充产品线与进入新市场,如今的MACOM拥有包括氮化(GaN)、硅锗(SiGe)、磷化铟(InP)、CMOS、砷化技术,共有4
    发表于 09-04 15:02

    什么是氮化(GaN)?

    氮化南征北战纵横半导体市场多年,无论是吊打碳化硅,还是PK砷化氮化凭借其禁带宽度大、击穿电压高、热导率大、电子饱和漂移速度高、抗辐射
    发表于 07-31 06:53

    氮化GaN 来到我们身边竟如此的快

    被誉为第三代半导体材料的氮化GaN。早期的氮化材料被运用到通信、军工领域,随着技术的进步以及人们的需求,
    发表于 03-18 22:34

    什么是氮化技术

    两年多前,德州仪器宣布推出首款600V氮化(GaN)功率器件。该器件不仅为工程师提供了功率密度和效率,且易于设计,带集成栅极驱动和稳健的器件保护。从那时起,我们就致力于利用这项尖端技术将功率级
    发表于 10-27 09:28

    氮化功率半导体技术解析

    氮化功率半导体技术解析基于GaN的高级模块
    发表于 03-09 06:33

    氮化充电器

    现在越来越多充电器开始换成氮化充电器了,氮化充电器看起来很小,但是功率一般很大,可以给手机平板,甚至笔记本电脑充电。那么氮化
    发表于 09-14 08:35

    什么是氮化功率芯片?

    eMode硅基氮化技术,创造了专有的AllGaN™工艺设计套件(PDK),以实现集成氮化 FET、
    发表于 06-15 14:17

    谁发明了氮化功率芯片?

    ,是氮化功率芯片发展的关键人物。 首席技术官 Dan Kinzer在他长达 30 年的职业生涯中,长期担任副总裁及更高级别的管理职位,并领导研发工作。他在硅、碳化硅(SiC)和氮化
    发表于 06-15 15:28

    氮化功率芯片的优势

    更小:GaNFast™ 功率芯片,可实现比传统硅器件芯片 3 倍的充电速度,其尺寸和重量只有前者的一半,并且在能量节约方面,它最高能节约 40% 的能量。 更快:氮化电源 IC 的集成设计使其非常
    发表于 06-15 15:32

    什么是氮化(GaN)?

    氮化,由(原子序数 31)和氮(原子序数 7)结合而来的化合物。它是拥有稳定六边形晶体结构的宽禁带半导体材料。禁带,是指电子从原子核轨道上脱离所需要的能量,氮化
    发表于 06-15 15:41

    为什么氮化(GaN)很重要?

    氮化(GaN)的重要性日益凸显,增加。因为它与传统的硅技术相比,不仅性能优异,应用范围广泛,而且还能有效减少能量损耗和空间的占用。在一些研发和应用中,传统硅器件在能量转换方面,已经达到了它的物理
    发表于 06-15 15:47

    氮化: 历史与未来

    (86) ,因此在正常体温下,它会在人的手中融化。 又过了65年,氮化首次被人工合成。直到20世纪60年代,制造氮化单晶薄膜的技术才得以
    发表于 06-15 15:50

    为什么氮化比硅更好?

    氮化(GaN)是一种“宽禁带”(WBG)材料。禁带,是指电子从原子核轨道上脱离出来所需要的能量,氮化的禁带宽度为 3.4ev,是硅的 3 倍多,所以说
    发表于 06-15 15:53

    有关氮化半导体的常见错误观念

    氮化(GaN)是一种全新的使能技术,可实现更高的效率、显着减小系统尺寸、更轻和于应用中取得硅器件无法实现的性能。那么,为什么关于氮化半导
    发表于 06-25 14:17