0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

TDK机器学习解决方案促进边缘人工智能前景大幅扩展

江师大电信小希 来源:江师大电信小希 作者:江师大电信小希 2023-10-27 12:18 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

物联网技术的进步为大量设备带来了互联网连接能力。此外,边缘计算的发展如今还为边缘设备提供机器学习*1,将人工智能的版图从云端扩展到外围。本文将深入介绍一款突破性软件解决方案,该方案将从根本上简化部署,在边缘设备上轻松实现机器学习。

边缘人工智能和边缘设备的发展

在边缘计算的背景下,边缘设备仅指在网络边缘运行并采集、处理和分析数据的设备。例如智能手机、安防摄像头、智能扬声器以及各种其他设备。近年来,随着边缘人工智能技术的兴起,在机器学习功能的加持下,这些设备变得更加智能。

边缘人工智能*2是通过人工智能在边缘设备上采集、处理和分析数据相关技术的统称。通常,实现人工智能需要大量数据和强大的计算能力,因此往往都运行在基于云的服务器上。而借助边缘人工智能技术,数据能够在设备内部进行处理,减少了与数据传输相关的延迟和成本,并且也更能保障隐私安全。

云计算与边缘计算对比

wKgZomU7OhmAUczvAADTOH75mbQ022.png

在边缘计算中,数据在设备上进行处理,而不是发送到云端,从而减少了传输延迟、安全风险和功耗。这些都是边缘人工智能本身具备的优势。

边缘设备与边缘人工智能技术相结合,不断拓宽物联网 (IoT) 的应用领域。自动驾驶汽车、工厂自动化和医疗设备管理等应用场景,这些都是边缘设备在需要实时数据处理和决策的环境中发挥关键作用的典型示例。

TinyML正在挑战物联网的极限

边缘人工智能以往都是在具备强大处理能力的设备上实现,例如智能手机和平板电脑。然而,随着物联网的迅速普及,一种名为 TinyML(微型机器学习)*3 的技术日益引起大家的广泛关注和浓厚兴趣,借助该技术,原先能力有限的小型设备也能够执行板载机器学习的功能。

一般而言,机器学习都是在高性能计算机或云服务器上执行的,这需要大量内存和高速处理器,从而产生相应的电力消耗。因此,可以基于大量数据集执行大规模机器学习模型,从而实现高度精确的图像识别、自然语言处理等工作任务。然而,工作流程(找元器件现货上唯样商城)的每一环节(包括数据采集、模型开发和验证)通常都需要由各专业领域经验丰富的工程师负责处理。

TinyML 是一种专为小型设备开发的机器学习技术,利用该技术,即使在处理能力有限的微控制器 (MCU) 上也能实现边缘人工智能。随着该技术的推出,预计很快会有更小巧的低功耗物联网设备问世。现在,几乎任何具有传感器和边际计算能力的设备上都可以运行机器学习推理,为这些设备赋予更高的智能。

TDK的的解决方案极大地促进了边缘机器学习

Qeexo 是一家硅谷初创公司,于 2023 年加入 TDK 集团,致力于开发针对边缘设备的机器学习解决方案,重点关注 TinyML 技术。Qeexo AutoML 是一款端到端“无代码”(即不需要以某种编程语言手写代码)平台,这样即便不是研发工程师,通过这款平台也能在小型边缘设备上实现机器学习。用户在基于 Web 的直观界面中工作,可轻松执行构建机器学习系统所需的所有步骤:首先采集原始数据并进行预处理,然后训练和完善识别模型,最后创建完整的软件包,并安装到边缘设备上,最终基于机器学习的智能产品开始发挥作用。

TDK 目前正在研发 i3 微模块,这是一款超紧凑型传感器模块,内置边缘人工智能,用于实施预测性维护,即在工厂和类似设施在异常和故障发生前进行预测,并率先采取行动。各类传感器(包括振动、温度和气压传感器)以及边缘人工智能和网状网络功能都集成到一个紧凑型封装中,无需依赖人力亦可监控设备状况,从而有助于充分

Qeexo 的产品管理总监 Michael A. Gamble 阐述了 Qeexo AutoML 的重要现实意义。“过去,嵌入式设备的机器学习是一个漫长而复杂的过程,需要具备高度专业的工程设计技能。Qeexo AutoML 能够让几乎任何人(包括那些不熟悉技术的人)都可以使用精简的端到端 Web 界面完成相同的工作。与数字设计工具和音频工作站软件面向几乎所有独具创意灵感的人群开放图像艺术和音乐制作的方式类似,AutoML 为机器学习创造了公平的竞争环境。简而言之,我们认为 Qeexo AutoML 是机器学习的‘民主化’技术平台。”

边缘设备技术的进步激励了众多具有复杂机器学习功能的物联网设备和微控制器产品的开发。随着 Qeexo AutoML 等工具的面世,现在可以更快地创建在边缘设备上运行的复杂机器学习模型。

由边缘人工智能负责处理从边缘设备的传感器中采集的数据,大大扩展了可行解决方案的选择范围。Gamble 指出:“将 Qeexo 的机器学习解决方案与 TDK 的传感器设备相结合,将使我们能够为客户带来一站式集成解决方案。我们期待在开发和提供智能边缘解决方案方面与更多的伙伴建立协作关系,充分发挥彼此的优势。”

如今,边缘设备不再局限于采集和传输数据用途,开始向具有自主学习能力的智能系统演变。先进的制造设施(有时称之为“智能”工厂)将开始为几乎每台机器和设备配备边缘设备。在消费领域,边缘设备则以移动产品和智能手机的形式广泛存在。在 AutoML、TinyML 和边缘人工智能等工具的驱动下,人工智能预计将变得日益普及,随处可见。这一切都将对我们的日常生活、企业发展和整个行业产生积极深远的影响。

术语

机器学习:指计算机使用特定算法和统计模型通过数据自主学习的技术。它基于大量数据挖掘关联规则,并根据这些结果做出预测和决策。

边缘人工智能:通用术语,指在网络末端(边缘)运行的设备上运行人工智能算法以采集、处理和分析数据的相关技术。

TinyML:一种机器学习技术,使处理能力有限的嵌入式设备或配备微控制器的小型设备上也能执行人工智能算法。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • TDK
    TDK
    +关注

    关注

    19

    文章

    751

    浏览量

    82098
  • 物联网
    +关注

    关注

    2939

    文章

    47317

    浏览量

    407809
  • 人工智能
    +关注

    关注

    1813

    文章

    49734

    浏览量

    261495
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    MT8391(Genio 720)参数规格书 _AIoT高性能边缘智能解决方案

    随着物联网技术的蓬勃发展和人工智能的广泛应用,智能设备正逐步迈向更高效、更智能的阶段。而联发科MT8391(Genio 720)平台正是为满足这一趋势而打造的高性能边缘人工智能平台,凭
    的头像 发表于 10-20 20:17 308次阅读
    MT8391(Genio 720)参数规格书 _AIoT高性能<b class='flag-5'>边缘</b><b class='flag-5'>智能解决方案</b>

    利用超微型 Neuton ML 模型解锁 SoC 边缘人工智能

    应用。 为什么选择 Neuton 作为开发人员,在产品中使用边缘人工智能的两个最大障碍是: ML 模型对于您所选微控制器的内存来说太大。 创建自定义 ML 模型本质上是一个手动过程,需要高度的数据科学知识
    发表于 08-31 20:54

    挖到宝了!人工智能综合实验箱,高校新工科的宝藏神器

    和生态体系带到使用者身边 ,让我们在技术学习和使用上不再受制于人。 三、多模态实验,解锁AI全流程 它嵌入了2D视觉、深度视觉、机械手臂、语音识别、嵌入式传感器等多种类AI模块,涵盖人工智能领域主要
    发表于 08-07 14:30

    挖到宝了!比邻星人工智能综合实验箱,高校新工科的宝藏神器!

    和生态体系带到使用者身边 ,让我们在技术学习和使用上不再受制于人。 三、多模态实验,解锁AI全流程 它嵌入了2D视觉、深度视觉、机械手臂、语音识别、嵌入式传感器等多种类AI模块,涵盖人工智能领域主要
    发表于 08-07 14:23

    超小型Neuton机器学习模型, 在任何系统级芯片(SoC)上解锁边缘人工智能应用.

    Neuton 是一家边缘AI 公司,致力于让机器 学习模型更易于使用。它创建的模型比竞争对手的框架小10 倍,速度也快10 倍,甚至可以在最先进的边缘设备上进行
    发表于 07-31 11:38

    Nordic 收购 Neuton.AI # Neuton ML 模型解锁 SoC 边缘人工智能

    Nordic 业界领先的 nRF54L 系列超低功耗无线 SoC 与 Neuton 革命性的神经网络框架相结合,开启边缘机器学习的新纪元,即使是资源受限的设备也能拥有可扩展的高性能
    的头像 发表于 07-01 17:32 2314次阅读
    Nordic 收购 Neuton.AI # Neuton ML 模型解锁 SoC <b class='flag-5'>边缘人工智能</b>

    爱立信携手超微加速边缘人工智能部署

    爱立信与超微 Supermicro近日宣布有意开展战略合作,加速边缘人工智能部署。
    的头像 发表于 06-17 09:42 1.5w次阅读

    如何构建边缘人工智能基础设施

    随着人工智能的不断发展,其争议性也越来越大;而在企业和消费者的眼中,人工智能价值显著。如同许多新兴科技一样,目前人工智能的应用主要聚焦于大规模、基础设施密集且高功耗的领域。然而,随着人工智能
    的头像 发表于 06-09 09:48 847次阅读

    STM32N6570-DK:边缘人工智能开发的全能探索板

    STM32N6570-DKDiscovery套件是一款专为边缘人工智能开发设计的完整演示和开发平台,基于ArmCortex-M55内核的STM32N657X0H3Q微控制器。该套件集成了丰富的硬件
    的头像 发表于 05-06 16:00 1116次阅读
    STM32N6570-DK:<b class='flag-5'>边缘人工智能</b>开发的全能探索板

    有奖直播 | @4/1 智在边缘:解锁边缘人工智能的无限可能

    如何赋能各行业,加速数字化转型,并探讨其在实际应用中可能面临的挑战及解决方案。 研讨会亮点: 1. 边缘人工智能技术的市场现状与发展趋势  2. 意法半导体的边
    的头像 发表于 03-25 16:32 588次阅读
    有奖直播 | @4/1 智在<b class='flag-5'>边缘</b>:解锁<b class='flag-5'>边缘人工智能</b>的无限可能

    人工智能机器学习以及Edge AI的概念与应用

    人工智能相关各种技术的概念介绍,以及先进的Edge AI(边缘人工智能)的最新发展与相关应用。 人工智能机器学习是现代科技的核心技术
    的头像 发表于 01-25 17:37 1573次阅读
    <b class='flag-5'>人工智能</b>和<b class='flag-5'>机器</b><b class='flag-5'>学习</b>以及Edge AI的概念与应用

    智能传感器如何推动边缘人工智能普及化

              智能传感器推动 边缘AI普及化         前言 英伟达公司(Nvidia)于日前发布了全新的50系显卡,在提高游戏性能的同时,着重优化了人工智能(AI)表现,这对于目前
    的头像 发表于 01-15 14:26 1090次阅读
    看<b class='flag-5'>智能</b>传感器如何推动<b class='flag-5'>边缘人工智能</b>普及化

    【「具身智能机器人系统」阅读体验】+数据在具身人工智能中的价值

    嵌入式人工智能(EAI)将人工智能集成到机器人等物理实体中,使它们能够感知、学习环境并与之动态交互。这种能力使此类机器人能够在人类社会中有效
    发表于 12-24 00:33

    边缘设备上设计和部署深度神经网络的实用框架

    ‍‍‍‍ 机器学习和深度学习应用程序正越来越多地从云端转移到靠近数据源头的嵌入式设备。随着边缘计算市场的快速扩张,多种因素正在推动边缘人工智能
    的头像 发表于 12-20 11:28 1390次阅读

    如何在低功耗MCU上实现人工智能机器学习

    人工智能 (AI) 和机器学习 (ML) 的技术不仅正在快速发展,还逐渐被创新性地应用于低功耗的微控制器 (MCU) 中,从而实现边缘AI/ML的
    的头像 发表于 12-17 16:06 1287次阅读