0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

纠缠原子可以获得更准确、更快的量子传感器

IEEE电气电子工程师 来源:IEEE电气电子工程师 2023-10-21 09:45 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

被称为纠缠的奇怪量子现象可以将原子和其他粒子连接在一起,从而使它们可以瞬间相互影响,而不受距离的限制。新的研究表明,利用纠缠可以获得更准确、更快的量子传感器,从而支持GPS等卫星导航技术。

量子传感器依赖于可能出现的效应,因为从最小的角度来看,宇宙是一个模糊的地方。众所周知,这些量子效应对外界干扰非常脆弱。然而,量子传感器利用了这一漏洞,以应对环境中最轻微的干扰。

量子传感器越来越达到前所未有的灵敏度和准确性,用于潜在的应用,如探测思想磁场、发现隐藏的地下结构和资源、帮助月球车探测月球岩石中的氧气以及收听暗物质的无线电波。

原子钟是目前最精确的计时器,也可以作为量子传感器。原子钟监测原子的振动,类似于落地摆钟通过摆动的钟摆来计时。光学原子钟使用激光束捕获和监测原子,目前的精度低至1阿秒,即十亿分之一秒的十亿分之一。

原子钟除了计时外,还有许多可能的应用。例如,它们是GPS和其他全球导航卫星系统(GNSS)所依赖的精确定时信号的关键,以帮助用户精确定位自己的位置。

科罗拉多大学博尔德分校(CU Boulder)的量子物理学家Ana Maria Rey解释说,纠缠在理论上有助于改进量子传感器,她是详细介绍这项新研究的资深作者之一。当单个原子被用作量子传感器,它们在能态之间移动时,它们本质上是有噪声的。然而,当原子纠缠在一起时,它们一致的行为方式可以减少噪音。这使得纠缠原子的信号更加清晰,改善了实际测量,并减少了获得可靠结果所需的时间。

理论上,纠缠可以将宇宙两端的粒子连接起来。在实践中,很难将相距较远的原子纠缠在一起。原子与离它们最近的原子有更强的相互作用;距离越大,它们之间的相互作用就越弱。科学家们希望增加他们可以纠缠粒子的最大距离,因为这也可以增加他们总共可以纠缠的粒子数量。

在他们的新研究中,Rey和她的同事们开发了一种新的方法来纠缠原子,尽管它们相距遥远。Rey说:“这为模拟无限范围的互动开辟了一条途径。”

在他们的实验中,科学家们排列了51个电捕获的钙离子,每个离子相距约5微米。他们使用激光在离子中产生被称为声子的准粒子振动。这些声子沿着原子线压缩,这样它们就可以共享量子信息并纠缠在一起。

产生纠缠的一种方法是通过一种称为自旋挤压的过程。所有遵循量子物理规则的物体都可以同时以多种能态存在,这种效应被称为叠加。自旋压缩在某些方面将所有这些可能的叠加态减少到只有几种可能性,而在其他方面则将其扩展。

在短时间内,相互作用的离子纠缠在一起,形成了一种自旋压缩态。然而,随着时间的推移,它们转变为“猫状态(https://spectrum.ieee.org/schrodingers-cat-qubit)”。这些状态由成对的状态组成,彼此截然相反,就像著名的思维实验薛定谔猫所经历的模糊的生与死状态一样。Rey说,猫的状态是高度纠缠的,这使得它们对传感器特别有用。

先前的研究设计了原子之间的静态连接,因为每个原子只能与特定的离子阵列相互作用。然而,在这项新的研究中,科学家们对激光进行了失谐,产生的磁场可能会使连接随着时间的推移而改变。这意味着一个最初只能与一组原子相互作用的原子最终可以转换为与阵列中的所有其他原子相互作用。

奥地利因斯布鲁克大学的量子物理学家Christian Roos是该研究的另一位资深合著者,他说:“我们首次证明了如何产生能随粒子数量而变化的纠缠。”Roos、Rey和他们的同事于8月30日在《自然》杂志上详细介绍了他们的发现(https://www.nature.com/articles/s41586-023-06472-z)。

Roos说,有了12个离子,科学家们发现他们的新技术可以将传感器中的噪声降低两倍多一点。Rey说,未来,他们计划将离子捕获在二维排列中,而不是线性链中,这可以帮助他们“捕获更多的离子并加快动力学,产生更好的纠缠”。

Roos表示,总的来说,研究人员希望“在最先进的时钟中实现这一策略,这些时钟可以处理3D阵列中捕获的数千个粒子,因此原则上可以创建出有史以来最精确的传感器”。

自旋压缩纠缠也有利于光学原子钟。在另一项研究中,同样位于科罗拉多大学博尔德分校的另一组研究人员使用激光将锶原子固定在一个二维平面中。被称为光镊子的精细控制光束将原子分成16到70个原子的组。利用高功率紫外线激光,科学家们将这些原子的电子激发到远离原子核的Rydberg轨道(https://spectrum.ieee.org/neutral-atom-qubit)。

Rydberg轨道的能量性质可以导致原子强烈地相互作用,如相互纠缠。利用自旋压缩,科学家们在多达70个原子的阵列中产生了纠缠。

使用这些纠缠阵列的时钟显示的信噪比大约是未纠缠时钟显示的1.5倍。这种精度的提高也可以被解释为更好的速度:该研究的资深作者、科罗拉多大学博尔德分校的物理学家Adam Kaufman说,纠缠时钟可以在非纠缠时钟所需时间的一半内达到给定的测量精度。

Kaufman提到,未来的研究可以探索除了自旋压缩之外产生纠缠的其他方法,看看它们是否会提高测量精度。他和他的同事还在8月30日的《自然》杂志上详细介绍了他们的发现(https://doi.org/10.1038/s41586-023-06360-6)。

审核编辑:彭菁

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 磁场
    +关注

    关注

    3

    文章

    904

    浏览量

    25245
  • 3D
    3D
    +关注

    关注

    9

    文章

    2989

    浏览量

    113788
  • 原子
    +关注

    关注

    0

    文章

    89

    浏览量

    20855
  • 量子传感器
    +关注

    关注

    4

    文章

    93

    浏览量

    8201

原文标题:纠缠原子有助于超精密量子传感器制备

文章出处:【微信号:IEEE_China,微信公众号:IEEE电气电子工程师】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    中国科学技术大学:实现纠缠增强纳米尺度单自旋量子传感

    为剖析物性提供新视角,并为发展单分子磁探测技术和推进量子科技奠定基础。 但是,物质存在大量自旋,对单个自旋的探测犹如在喧闹的体育场中试图清晰捕捉某个人的低语,这对探测技术提出了严峻挑战。 金刚石氮—空位色心量子传感器
    的头像 发表于 12-01 18:42 1382次阅读
    中国科学技术大学:实现<b class='flag-5'>纠缠</b>增强纳米尺度单自旋<b class='flag-5'>量子</b><b class='flag-5'>传感</b>

    案例分享|PPLN在频率片编码的纠缠量子密钥分发中的应用

    简介:我们以前分享过《基于time-bin量子比特的高速率多路纠缠源——PPLN晶体应用》,探讨了PPLN在时间片QKD中的应用。时间-能量纠缠虽是PPLN最基础的产生形式,但也可以
    的头像 发表于 09-22 11:11 324次阅读
    案例分享|PPLN在频率片编码的<b class='flag-5'>纠缠</b><b class='flag-5'>量子</b>密钥分发中的应用

    极端条件下稳定工作的量子传感器问世

    美国华盛顿大学领导的研究团队研制出一种量子传感器,能够在超过大气压3万倍的极端条件下稳定工作,并实现对材料应力和磁性的高灵敏测量。这是首个在如此高压环境中成功运行的量子传感器,为探索物
    的头像 发表于 09-18 18:18 165次阅读

    量子电导式传感器与其他传感器相比有哪些独特优势?

    量子电导式传感器作为近年来传感技术领域的重要突破,凭借其独特的物理机制和性能表现,在环境监测、生物医学、工业控制等领域展现出显著优势。与传统传感器相比,其核心差异在于利用
    的头像 发表于 07-27 22:15 467次阅读

    美国智库发布量子传感器产业报告,担心这条赛道被中国卡脖子?!(附下载)

        近期,美国智库——新美国安全中心(Center for A New American Security,CNAS),针对量子传感器产业发布了一份报告 , 题为《原子优势:加速美国量子
    的头像 发表于 06-17 09:29 3.9w次阅读
    美国智库发布<b class='flag-5'>量子</b><b class='flag-5'>传感器</b>产业报告,担心这条赛道被中国卡脖子?!(附下载)

    求助,从哪里可以获得USBC到DP加密狗参考设计的CYPD3120最新固件?

    从哪里可以获得 USBC 到 DP 加密狗参考设计的 CYPD3120 最新固件?
    发表于 05-23 06:54

    量子精密测量“牵手”传感技术 多款量子传感器在合肥发布

    量子科技是安徽三大科创前沿高地之一,传感器则是安徽先进制造业的“三谷”之一,均被写入2025《安徽省政府工作报告》。为了让传感设备拥有“更加敏锐的感官”,5月18日,在合肥市量子科仪谷
    的头像 发表于 05-20 18:06 690次阅读
    <b class='flag-5'>量子</b>精密测量“牵手”<b class='flag-5'>传感</b>技术 多款<b class='flag-5'>量子</b><b class='flag-5'>传感器</b>在合肥发布

    量子技术最新进展 首款高精度量子纠缠光学滤波问世 还有量子计算机运行十亿级AI微调大模型

    给大家带来一些量子技术的最新消息,最前沿的科研进展。 首款高精度量子纠缠光学滤波问世 据外媒报道,美国南加州大学团队在最新一期《科学》杂志上发表
    的头像 发表于 04-08 16:04 1334次阅读

    无线传感器网络:智能监测的未来

    节点通过无线通信方式连接而成的网络。这些传感器节点能够实时感知、采集、处理和传输环境参数,如温度、湿度、光照、压力、声音等。通过将这些数据汇总并分析,我们可以获得对监测区域的全面、准确和实时的了解。 在农业领
    的头像 发表于 02-25 08:34 841次阅读

    光谱传感器可以做什么

    光谱传感器是一种能够检测多种颜色和光谱信息的传感器,通过测量物体的光谱特征,可以实现对物体的颜色、成分等属性的准确判断。以下是对光谱传感器
    的头像 发表于 01-27 14:19 1264次阅读

    量子处理的作用_量子处理的优缺点

    量子比特可以同时处于0和1的状态,这种量子叠加特性使得量子处理能够同时处理大量信息。此外,量子
    的头像 发表于 01-27 13:44 1503次阅读

    Imec等推出无铅量子点SWIR传感器

    成果标志着在红外成像技术领域取得了重要突破。 该传感器成功实现了1390纳米的成像效果,为用户提供了清晰、准确的短波红外图像。尤为值得一提的是,该传感器采用了无铅量子点技术,为传统含铅
    的头像 发表于 01-17 11:15 843次阅读

    美国防部正计划研发更强大的量子传感器

    DARPA 正专注于推进量子传感器的研究,以应对定位、导航和授时(PNT)以及军事应用中的情报、监视和侦察(ISR)方面的挑战。最新一项名为“鲁棒量子传感器”(RoQS)的新计划旨在提
    的头像 发表于 01-10 18:08 1899次阅读

    夏克-哈特曼波前传感器

    夏克-哈特曼传感器是一种著名的探测,用于收集有关入射光相位的信息。由于相位信息不能直接获取(在实验环境中),使用微透镜阵列来产生聚焦图案。通过分析这些图案,例如测量焦点的横向位移,可以获得每个
    发表于 01-09 08:50

    量子通信的基本原理 量子通信网络的构建

    量子通信的基本原理 1. 量子叠加原理 量子叠加原理是量子通信的基础之一。在量子力学中,一个量子
    的头像 发表于 12-19 15:50 3532次阅读