0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

研究人员正试图制造出使用DRX材料来提高电池的循环寿命

IEEE电气电子工程师 来源:IEEE电气电子工程师 2023-10-18 11:32 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

随着汽车、卡车和公共汽车(甚至飞机和火车)越来越多地从燃烧化石燃料转向使用电池,对关键电池金属的需求开始飙升。根据市场情报公司S&P Global最近的一份报告(https://www.spglobal.com/marketintelligence/en/campaigns/battery-metals-market),电动汽车的销量预计将在2023年至2027年间翻一番,到2024年将引发锂短缺,到2027年将引发镍和钴短缺,镍和钴是当今锂电池阴极的两种关键成分。

研究人员正试图制造出使用较少这些关键金属的阴极,或者完全取代它们。一个团队认为,他们可能找到了合适的材料:无序岩盐(DRX) —— 食盐的“表亲”。由劳伦斯伯克利国家实验室(伯克利实验室)领导的DRX联盟目前正竞相将这种有前景的新型阴极竞争者商业化,计划在不到五年的时间内展示电动汽车电池的DRX阴极。

DRX阴极可以生产出比现在更具单位重量能量的锂离子电池,这将使车辆的续航里程更长。这些阴极可以在没有钴和镍的情况下提供这种能量密度优势。DRX联盟最早的一些配方是用锰或钛制成的,它们都比镍和钴便宜。

伯克利实验室的研究科学家Guoying Chen表示:“你可以使用很多不同的过渡金属 —— 元素要丰富得多,我们也很容易获得。这些年来,传统的锂离子正极材料一直依赖镍和钴,但现在我们突然有了一个多功能、灵活的空间。可持续性确实成为了一大优势。”他与加州大学伯克利分校材料科学与工程教授Gerbrand Ceder共同领导该联盟。

当今电池中使用的高密度阴极是由锂金属氧化物制成的。它们的晶体结构由锂与钴、镍和其他金属交替的重复层组成。锂离子很容易滑入和滑出层之间的间隙,而钴离子就像支撑柱一样,使结构稳定。Chen说:“如果你不使用钴之类的东西,当你对这些材料进行充电和放电时,层状结构就不那么稳定了。”这就是为什么完全去除钴一直是一个挑战,尽管几个制造无钴阴极的研究项目正在进行中。

“All these years, traditional lithium-ion cathode materials have relied on nickel and cobalt, but now all of a sudden we have a versatile, flexible space.”

—GUOYING CHEN, RESEARCH SCIENTIST, BERKELEY LAB

但在所有电池金属中,钴是一个特别棘手的金属。世界上一半以上的钴来自刚果民主共和国,那里的采矿做法引起了人们对环境和人权问题的担忧。使用更好的方法在世界新地区寻找钴和其他电池金属是一种解决方案。从海洋采矿是另一回事,但它也子某种程度上能够解决问题。

DRX材料不需要钴来获得稳定性,因为它们具有立方而非层状的晶体结构。锂离子在材料中以三维渗透,而不是像在传统的层状阴极材料中那样以二维渗透。Chen说,这意味着DRX阴极可以“填充更多的锂离子,这就是为什么它们能提供更高的能量密度”。我们称之为锂过剩的正极材料。”

Ceder和他的同事于2014年(https://pubs.rsc.org/en/content/articlelanding/2015/EE/C5EE02329G)首次报道了DRX材料在计算研究中显示出足够的锂离子存储前景,研究人员对这些材料进行了为期四年的深入研究(energy.gov/eere/vehicles/articles/deep-dive-next-generation-cathode-materials-2b-new-class-materials)。该团队随后于2022年10月成立了DRX联盟,美国能源汽车技术办公室提供了2000万美元的资金。

该联盟分布在美国能源部的各个国家实验室和大学。不同的团队正在进行计算建模,以得出新的和改进的DRX阴极化学成分;制作材料并对其进行实验测试,以表征和改进它们;进而开发最适合电池中DRX阴极的新型电解质。

Chen说,研究人员必须克服的最大挑战是制造能够持续数千次充电循环的稳定材料。“我们的材料表现出了良好的性能,但我们正在研究的一件主要事情是使用DRX材料来提高电池的循环寿命,希望这些材料在电动汽车电池中使用很长时间。”

审核编辑:彭菁

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车电池

    关注

    0

    文章

    25

    浏览量

    10049
  • 电池
    +关注

    关注

    85

    文章

    11360

    浏览量

    141307
  • 晶体结构
    +关注

    关注

    0

    文章

    22

    浏览量

    426

原文标题:无序的岩盐可能使电动汽车电池的能量密度增加三倍

文章出处:【微信号:IEEE_China,微信公众号:IEEE电气电子工程师】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    电池寿命循环测试仪的核心原理与系统功能

    老化仪(又称电池寿命循环测试仪)通过模拟实际工作条件、加速老化过程,对电池性能进行系统评估,为电池研发、生产与维护提供全生命周期的数据支持。
    的头像 发表于 12-03 11:20 95次阅读

    科学家利用微波激光照射钻石,制造出时间准晶体

    科学家利用微波激光照射钻石,制造出时间准晶体。 美国华盛顿大学、麻省理工学院和哈佛大学科学家携手,成功在钻石上“雕刻”出一种全新的物质形态:时间准晶体。这项突破有望为量子计算、精确计时等领域带来
    的头像 发表于 11-19 07:35 49次阅读
    科学家利用微波激光照射钻石,<b class='flag-5'>制造出</b>时间准晶体

    聚焦离子束(FIB)技术在电池材料研究中的应用

    横截面分析操作与目的利用聚焦离子束(FIB)技术对电池材料进行精确切割,能够制备出适合观察的横截面。这一操作的核心目的在于使研究人员能够直接观察材料内部不同层次的结构特征,从而获取
    的头像 发表于 10-20 15:31 219次阅读
    聚焦离子束(FIB)技术在<b class='flag-5'>电池</b><b class='flag-5'>材料</b><b class='flag-5'>研究</b>中的应用

    氩离子束截面分析在锂电池电极材料研究中的应用

    高能量密度在相同的体积或重量下,锂离子电池能够储存更多的电能,为新能源汽车提供更长的续航里程。2.长循环寿命在多次充放电循环后,电池的容量衰
    的头像 发表于 10-15 16:24 112次阅读
    氩离子束截面分析在锂<b class='flag-5'>电池</b>电极<b class='flag-5'>材料</b><b class='flag-5'>研究</b>中的应用

    锂离子电池集流体—铜箔的表面粗糙度表征研究

    的固体电解质相间膜,减少锂枝晶的生长,并延长电池循环寿命。美能光子湾3D共聚焦显微镜,能够快速高效完成亚微米级形貌和表面粗糙度的精准测量任务,协助研究人员观察集流
    的头像 发表于 08-05 17:56 501次阅读
    锂离子<b class='flag-5'>电池</b>集流体—铜箔的表面粗糙度表征<b class='flag-5'>研究</b>

    锂离子电池正极材料之一:三元高镍化的研究现状

    在新能源汽车蓬勃发展的当下,锂电池作为其核心动力源,其性能的优劣直接关系到车辆的续航里程、使用寿命等关键指标。而锂电池正极材料,更是决定电池
    的头像 发表于 08-05 17:52 1119次阅读
    锂离子<b class='flag-5'>电池</b>正极<b class='flag-5'>材料</b>之一:三元高镍化的<b class='flag-5'>研究</b>现状

    无刷直流电机双闭环串级控制系统仿真研究

    以来伴随着永磁材料技术、计算机及控制技术等支撑技术的快速发展及微电机制造工艺水平的不断提高,永磁无刷直流电动机在高性能中、小伺服驱动领域获得广泛应用并日趋占据主导地位吗。一直以来,研究人员
    发表于 07-07 18:36

    FIB 技术在电池材料研究中的相关应用

    横截面分析操作与目的利用聚焦离子束(FIB)技术对电池材料进行精确切割,能够制备出适合观察的横截面。这一操作的核心目的在于使研究人员能够直接观察材料内部不同层次的结构特征,从而获取
    的头像 发表于 04-30 15:20 497次阅读
    FIB 技术在<b class='flag-5'>电池</b><b class='flag-5'>材料</b><b class='flag-5'>研究</b>中的相关应用

    研究人员开发出基于NVIDIA技术的AI模型用于检测疟疾

    疟疾曾一度在委内瑞拉销声匿迹,但如今正卷土重来。研究人员已经训练出一个模型帮助检测这种传染病。
    的头像 发表于 04-25 09:58 736次阅读

    电动汽车电池寿命检测方法简介

    电池和MH-Ni电池循环寿命可达500~1000次,有的甚至几千次,启动型铅酸电池循环
    的头像 发表于 03-10 10:13 1145次阅读
    电动汽车<b class='flag-5'>电池</b><b class='flag-5'>寿命</b>检测方法简介

    石墨烯铅蓄电池研究进展、优势、挑战及未来方向

    石墨烯铅蓄电池是将石墨烯材料与传统铅酸电池技术相结合的研究方向,旨在提升铅酸电池的性能(如能量密度、循环
    的头像 发表于 02-13 09:36 2728次阅读

    室温下制造半导体材料的新工艺问世

    近日,荷兰特文特大学科学家开发出一种新工艺,能在室温下制造出晶体结构高度有序的半导体材料。他们表示,通过精准控制这种半导体材料的晶体结构,大幅降低了内部纳米级缺陷的数量,可显著提升光电子学效率,进而
    的头像 发表于 01-23 09:52 640次阅读
    室温下<b class='flag-5'>制造</b>半导体<b class='flag-5'>材料</b>的新工艺问世

    探索物质极限:原子级制造的崛起与未来

    一、原子级制造的定义 (一)原子级制造的基本概念 原子级制造(Atomic-levelmanufacturing),又称为原子尺度制造,是一种在原子或分子层面上进行精确操控,以
    的头像 发表于 01-20 11:19 1525次阅读

    基于梯度下降算法的三元锂电池循环寿命预测

    摘要:随着电动汽车产销量的持续攀升,对于动力电池循环寿命性能的评估及预测已成为行业内重点关注的问题之一。对某款三元锂电池进行了25℃及45℃下的长周期
    的头像 发表于 01-16 10:19 783次阅读
    基于梯度下降算法的三元锂<b class='flag-5'>电池</b><b class='flag-5'>循环</b><b class='flag-5'>寿命</b>预测

    特种设备磷酸铁锂电池循环寿命

    特种设备磷酸铁锂电池133-2636-1310的循环寿命长,具有高安全性、高稳定性、长寿命等优点,在特种设备领域得到了广泛的应用。为了延长磷酸铁锂
    的头像 发表于 12-18 16:48 1727次阅读
    特种设备磷酸铁锂<b class='flag-5'>电池</b><b class='flag-5'>循环</b><b class='flag-5'>寿命</b>