0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

太赫兹和微波的区别是什么?

工程师邓生 来源:未知 作者:刘芹 2023-09-19 17:50 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

太赫兹和微波的区别是什么?

太赫兹和微波是在电磁波谱中两个不同的频率范围。太赫兹波,又称作亚毫米波、太赫兹射频波,它的频率范围是0.1-10太赫兹。微波,频率范围为1~300GHz。

太赫兹波有很好的穿透力,并且可以通过相互作用检测物质成分以及各种非常规的物理现象。太赫兹波的应用非常广泛,涵盖了医学、非破坏检测、光谱学以及安全检查和军事用途等多个领域。

微波则常用于通讯、雷达、遥感等领域。微波的波长相对比较长,其特殊的物理特性可以用于通讯和雷达等行业。

在波长方面,太赫兹波强调的是红外和毫米波之间的低能区域,波长范围比较小,电磁波的振荡频率比较低。而微波波长范围更广,它是在射频和红外光之间的区域,拥有的波长也比太赫兹波要长。

此外,太赫兹波的发射机制和微波也有很大的区别。太赫兹波通常通过光源激发产生,而微波则是通过射频信号轮换并震荡产生。太赫兹波的发射机制使其能够适用于一些复杂的特殊环境,而微波的发射机制则可以针对其特定用途进行优化。

在应用方面,太赫兹波和微波也有一些区别。太赫兹波可以适用于各种使用频率的注入光源,可以用于非毁性检测、生物信息学研究、材料检测等。而微波在通讯和雷达等应用方面具有广泛的应用。

总的来说,太赫兹和微波是两种不同频率范围的电磁波,它们在波长、发射机制以及应用方面都有明显的差异。太赫兹波和微波在各自的领域都有重要的应用,我们需要根据具体的需求来选择使用哪一种电磁波。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 发射机
    +关注

    关注

    7

    文章

    520

    浏览量

    49078
  • 电磁波
    +关注

    关注

    21

    文章

    1498

    浏览量

    55383
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    上海高等研究院在可调强场赫兹自由电子激光研究中取得重大突破

    波长连续可调的强场赫兹(THz)辐射在量子材料、分子催化、生命科学、非线性光学、场致超导等前沿科学研究以及下一代通信、气象与环境监测、安全检测、雷达探测等关键技术领域具有重要应用价值。然而,目前
    的头像 发表于 11-10 08:04 116次阅读
    上海高等研究院在可调强场<b class='flag-5'>太</b><b class='flag-5'>赫兹</b>自由电子激光研究中取得重大突破

    微波雷达和毫米波雷达有什么区别

    微波雷达和毫米波雷达有什么区别 前言:不知道大家有没有发现,各种雷达模块的使用开始逐渐加入各种智能家居产品了,像人来灯亮,人走灯灭这种雷达感应的产品早几年就开始进入市场了,还有各种感应开关等产品
    的头像 发表于 10-30 16:56 1142次阅读
    <b class='flag-5'>微波</b>雷达和毫米波雷达有什么<b class='flag-5'>区别</b>

    电控可调超表面实现实时赫兹全息成像

    赫兹波段在高速无线通信、高级加密和医疗成像等下一代技术中具有巨大应用潜力。然而由于赫兹波与大多数天然材料相互作用较弱,对其调控长期面临技术挑战。 过去二十年间,研究者逐渐转向超表面
    的头像 发表于 10-24 07:54 122次阅读
    电控可调超表面实现实时<b class='flag-5'>太</b><b class='flag-5'>赫兹</b>全息成像

    微波通信的组成和应用

    一提到微波,大家首先就会想到的是日常生活中使用微波炉来加热食物。那微波炉与通信中使用的微波又有什么区别呢?
    的头像 发表于 10-16 09:37 1126次阅读
    <b class='flag-5'>微波</b>通信的组成和应用

    中国科大实现波导上高功率赫兹表面波的高效激发

    飞秒激光辐照金属丝波导,通过电子发射过程激发赫兹表面波 近日,我校核科学技术学院胡广月团队在高功率赫兹表面波研究方面取得重要进展。团队利用飞秒激光聚焦作用金属丝波导,通过电子发射过
    的头像 发表于 09-01 09:15 392次阅读
    中国科大实现波导上高功率<b class='flag-5'>太</b><b class='flag-5'>赫兹</b>表面波的高效激发

    我国科研人员提出紧凑型赫兹三光梳光源实现方案

    赫兹三光梳系统示意图及有限元模拟仿真 近日,中国科学院上海微系统与信息技术研究所研究员黎华团队与华东师范大学教授曾和平团队合作,在赫兹(THz)三光梳光源研究方面取得进展。该研究提
    的头像 发表于 08-27 15:29 376次阅读
    我国科研人员提出紧凑型<b class='flag-5'>太</b><b class='flag-5'>赫兹</b>三光梳光源实现方案

    赫兹频段硅的光学特性

    目前,在赫兹(远红外)频段最透明的绝缘材料就是高阻的浮区(FZ)单晶硅。这是科研人员不断的经过实验并分析得出的结果。
    的头像 发表于 08-12 10:45 1010次阅读
    <b class='flag-5'>太</b><b class='flag-5'>赫兹</b>频段硅的光学特性

    上海光机所在强场赫兹对砷化镓偶次谐波调控研究方面取得新进展

    图1. 强场赫兹波的产生及物质调控信号测量装置 (a)实验光路;(b)泵浦光光谱;(c)赫兹频谱。 近期,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室在强场THz脉冲
    的头像 发表于 05-20 09:31 562次阅读
    上海光机所在强场<b class='flag-5'>太</b><b class='flag-5'>赫兹</b>对砷化镓偶次谐波调控研究方面取得新进展

    Keysight是德示波器从低频到赫兹的全频段测量解决方案

    在电子测量领域,示波器作为信号分析的核心工具,其性能边界始终与科技发展同步演进。从音频信号的毫赫兹频段到赫兹通信的亚毫米波频段,不同应用场景对示波器的带宽、采样率、动态范围提出了差异化需求。作为
    的头像 发表于 05-12 15:28 1089次阅读
    Keysight是德示波器从低频到<b class='flag-5'>太</b><b class='flag-5'>赫兹</b>的全频段测量解决方案

    6G亚太赫兹通信测试解决方案

    近日,国内首台赫兹/6G大容量无线超网基站在石家庄铁塔公司试点成功,这标志着中国在赫兹无线通信技术领域取得了重大新突破。
    的头像 发表于 04-24 16:45 1081次阅读
    6G亚太<b class='flag-5'>赫兹</b>通信测试解决方案

    聊城大学/深圳大学/南京大学:三强联手——赫兹传感领域再添利器!

    研究背景 在第五代(5G)技术的基础上,第六代(6G)网络的发展正推动无线通信技术迈向更高的数据吞吐量和更低的延迟。6G网络预计将在赫兹(THz)频段运行,这为实现超高速通信和精确传感提供了巨大
    的头像 发表于 04-20 17:47 561次阅读
    聊城大学/深圳大学/南京大学:三强联手——<b class='flag-5'>太</b><b class='flag-5'>赫兹</b>传感领域再添利器!

    赫兹细胞能量仪主控芯片方案单片机开发控制板布局规划

    赫兹细胞理疗仪的工作原理及使用方法  赫兹(THZ)是指频率在0.1一10THZ之间的电磁波,其波段是介于红外线和微波之间 ,
    发表于 03-25 15:37

    上海光机所在集成化高重频赫兹光源研究方面取得进展

    by an ultrafast Yb-laser” 为题发表在IEEE Photonics Journal。 赫兹波是波长介于微波和红外光之间的电磁辐射,在生物成像、高速通信、基
    的头像 发表于 02-26 06:23 709次阅读
    上海光机所在集成化高重频<b class='flag-5'>太</b><b class='flag-5'>赫兹</b>光源研究方面取得进展

    三种赫兹波的产生方式

    本文简单介绍了三种赫兹波的产生方式。 赫兹波(THz)是一种电磁波,在电磁波谱上位于红外与微波之间。
    的头像 发表于 02-17 09:09 3471次阅读
    三种<b class='flag-5'>太</b><b class='flag-5'>赫兹</b>波的产生方式

    隔离式ADC和普通ADC的区别是什么?

    隔离式ADC和普通ADC的区别是什么? 普通ADC+光耦能否等同于隔离式ADC
    发表于 12-27 06:09