0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电子元件性能下降,如何才能保护您的模拟前端呢?

jf_pJlTbmA9 来源:亚德诺半导体 作者:亚德诺半导体 2023-11-02 16:24 次阅读

何谓 EOS?

EOS是一个通用术语,表示因为过多的电子通过相应路径试图进入电路,导致系统承受过大压力。有一点需要注意,这是一个随功率和时间变化的函数。

如果将复杂电路看作一个简单的消耗功率的元件,例如,将它视为一个电阻。在额定功率为1 W的1 Ω电阻上施加1.1 V电压,计算功耗的公式如下:

pYYBAGIB18aAe9vRAAAHlpHkxGk377.png

计算得出,消耗的功率为1.21 W。虽然电阻的额定功率为1 W,但是可能存在一些余量,所以暂时不用担心这一点。但并不能够始终如此。

将电压增加到2 V,会出现什么情况?如果功耗达到之前示例的4倍,那么电阻可能会像一个空间加热器在很有限的时间内提高环境温度,但是请记住这个公式:

poYBAGIB18eASQYkAAADd64xPz8366.png

如果将电压增加到10 V,但仅持续10毫秒呢?有趣的地方就在这里:如果不了解部件,以及设计处理部件的目的,您就无法真正了解会对该部件产生什么影响。现在,来看看整个元件系统。

哪些部分易受EOS影响?

一般而言,任何包含电子元件的部分都容易受到EOS影响。特别薄弱的部分是那些与外界的接口,因为它们很可能是最先接触到静电放电(ESD)、雷击等的部分。我们感兴趣的部件包括USB端口示波器模拟前端,以及最新的高性能物联网混合器的充电端口等。

pYYBAGIB18mALOwcAAA9vy1xQqY068.jpg 图1. 8 kV时的理想接触放电电流波形。

如何知道要防范哪些问题?

虽然我们想要保护系统免受电气过载,但是这个术语太宽泛了,对于决定如何保护系统没有任何帮助。为此,IEC(以及许多其他组织)做了大量工作来弄清楚在现实生活中可能会遇到的EOS类型。接着将重点探讨IEC规范,因为它们涵盖广泛的市场应用,而与该规范相关的混乱状况也说明需要本文来厘清。表1显示了三个规范,它们定义了系统可能遇到的EOS状况类型。在本文中只对ESD做深入探讨,同时也会让大家熟悉电快速瞬变(EFT)和浪涌。

poYBAGIB18uAQU-dAAIjHtGkew8433.jpg 图2. 符合IEC61000-4-4标准的电快速瞬变4级波形。
pYYBAGIB18yAAfGrAABpwWa7VDE193.png 表1. IEC规范

集成电路制造商如何应对芯片ESD?

芯片中的保护主要用于应对制造过程中的ESD,而不是在系统通电状态下的ESD。这一差异非常重要,因为在放大器连接电源和没连接电源时,其在遭受静电时的反应截然不同。例如,内部保护二极管可消除在无电源供电时对部件的静电放电冲击。但是,当有电源供电时,对部件的静电放电冲击可能会使内部结构传导的电流超过其设计承受水平,这可能导致该部件损毁,具体由部件和电源电压决定。

这是全球范围内亟待解决的问题!如何保护IC免受这种潜在威胁?

希望您能够意识到,这个挑战涉及很多因素,一个简单的解决方案是无法应用于所有情况的。下方是一个涉及因素列表,列出了决定部件能否承受EOS事件的因素。这些因素分为两组:无法控制的因素和可以控制的因素。

无法控制的因素:

IEC波形:ESD、EFT和浪涌的曲线各有不同,它们会以不同的方式攻击器件的某些弱点。

考虑器件的工艺技术:有些工艺技术比其他技术更容易发生闩锁。例如,CMOS工艺容易发生闩锁,但在许多现代工艺中,可以通过精心设计和沟槽隔离来减轻这种危害。

考虑器件的内部结构:集成电路的设计方法很多,所以对一种电路有效的保护方案对另一种可能无效。例如,许多器件都有时序电路,检测到波形足够快时,就会启动保护结构。这可能意味着,如果您在静电放电的位置增加更多电容,那么能够承受静电放电冲击的器件可能无法承受这种电容冲击。这种结果出乎意料,但认识到以下这一点非常重要:常见的电路保护方法,即RC滤波器,可能会让情况更糟。

poYBAGIB182AMB0lAACmn9IDX70112.jpg 图3. IEC61000-4-5浪涌在8 μs/20 μs电流波形位置转为正常状态。

可以控制的因素:

PCB布局:部件离冲击的位置越近,其电能波形就越高。这是因为,当冲击波形沿某条路径传播时,从传播路径辐射出去的电磁波会有能量损耗、这是由于路径电阻产生的热量以及与周边导体耦合的寄生电容和电感所导致。

保护电路:这是对器件的生存能力最有意义的部分。上述无法控制的因素将会影响保护方案的设计。

现在有过压保护(OVP)和过限额(OTT)特性。可以利用这些特性来保护电路不受高压瞬变影响吗?

OVP和OTT特性让部件的输入在承受超过电源电压的电压时,本身不会受到损坏。依靠这些特性来保护电路不受高压瞬变影响,就像是依靠雨靴来应对高压冲水机一样。雨靴只对水深不超过其高度的浅水沆有效,就像OVP和OTT只适用于比其额定值低的电压。OVP和OTT的额定电压比给定的供电轨电压高几十伏。它无法抵抗8000V的高压。

如何知道保护电路是否有效?

通过结合器件知识、经验和测试,大致可以知道,系统中应该采用哪些部件最有利。为了保证器件可控,各家制造商提供了五花八门的保护组件,本文只讨论两种经证实能够有效保护模拟前端的电路保护方案。以下方案假设采用一个缓冲配置的运算放大器。这被认为是最严格的保护测试,因为同相输入会承受所有冲击,除此以外,电能无处可去(安装保护电路之前)。

pYYBAGIB18-AYsl5AABXL2ETnxg611.jpg 图4. IEC-61000-4-2测试中采用的电路。

设计考量:

R1应该是一个防脉冲(厚膜)电阻,这样它在经受高压瞬变时不会轻易毁坏。

R1电压噪声与电阻值的平方根成正比,如果系统需要低噪声,这是一个重要的考虑因素。

C1应该是一个陶瓷电容,其封装尺寸至少为0805,以减小封装的表面电弧。

C1至少应为X5R类型温度系数的电容(理想为C0G/NP0类型),以保持可预测的电容值。

C1内部的等效串联电感和电阻应尽可能低,以便有效吸收冲击。

针对给定的封装尺寸,C1的额定电压应尽可能高(最低100 V)。

在本例中,C1的位置在R1之前,因为它构建了一个电容分压器,其中150 pF 电容(如图5所示)将ESD波形放电到系统中,这样在放大器经受波形之前,能量已经先分流。

poYBAGIB19CAPRX5AAA-c0xejJc530.jpg 图5. 通过在模拟输入端配置低通滤波器实现输入保护。

poYBAGIB19GADGdWAAA86ootWNY205.png RC网络保护方案

RC网络保护方案

注意:虽然这种前端保护方法并没有得到电容制造商的认可,但在针对放大器的数百次测试中证明是有效的。ESD测试曲线(如下所述)仅在有限范围的电容产品上进行过测试,因此,如果使用不同的电容产品,需要先表征其应对冲击的特性,例如通过测量经受ESD冲击之前和之后的电容和等效串联电阻的 方法,这一点非常重要。该电容器件应保持容值稳定,并且在被冲击后,始终在直流下保持开路状态。

设计考量:

与RC网络相同:R1应能承受脉冲,但可能需要考虑噪声。

应该指明D1需要满足的标准。有些可能只涵盖ESD,其他的则涵盖EFT和浪涌标准。

D1应该是双向的,这样它就可以同时应对正负冲击。

D1反向工作电压应尽可能高,同时仍需通过必要的测试。如果过低,在正常的系统电压电平下可能出现漏电流。如果过高,则可能无法在系统损坏之前做出反应。

TVS二极管泄漏对性能的影响

模拟电子领域,大家都知道TVS二极管容易发生泄漏,因此不能用于精密模拟前端。但有时情况不是这样,许多数据手册中的泄漏电流< 100µA,对于大多数模拟产品这个值是相当高的。对于这个数值,问题在于,它是在最高温度(150°C)和最大工作电压下的取值。在这种情况下,二极管极易泄漏。超过85°C,所有二极管的泄漏电流会更高。只要选择反向工作电压更高的TVS二极管,且不期望在85°C以上实现极低漏电流,则有望获得更低的泄漏电流。

poYBAGIB19OAGhjrAAA-m3hgSq4441.jpg 图6. 通过在模拟输入端配置TVS二极管实现输入保护。

poYBAGIB19SAMgNTAAAqdS_WGX0679.png TVS网络保护方案

如果您选择了合适的TVS,泄漏电流值可能低到让您惊讶。图7所示为测量12个相同产品型号的TVS二极管时获得的泄漏数据。

pYYBAGIB19WAC_rqAABDR9FpTqE537.jpg 图7. 36 V双向TVS二极管Bournes T36SC的泄漏值,在TIA中采用ADA4530评估板,带屏蔽,在25°C时采用10 G电阻。

在测量的12个TVS二极管中,在直流偏置电压为5 V时,最严重的泄漏量为7 pA。这比最坏情况下的数据表的值要好千百万倍。当然,不同批次的TVS二极管在泄漏方面存在差异,但这至少可以说明预期的泄漏幅度。如果系统经受的温度不会超过85°C,TVS二极管可能是个不错的选择。只要记住,如果您选择的产品不是本文所述的测试产品,请表征其泄漏特性。对一个部件或制造商而言正确的结论,对其他部件或制造商可能并不正确。

测试结果:

采用IEC ESD标准对一系列运算放大器进行了测试。表2显示不同保护方案分别适合保护的组件。虽然ESD标准规定在±8 kV要保证经受三次冲击,但所有这些方案都通过了在±9 kV时经受100次冲击的测试,以确保提供足够的保护余量。

pYYBAGIB19eAJkiXAACP6PYsiUo259.png
poYBAGIB19iAd4f4AACCGPGVl0A243.png 表2. 通过IEC-61000-4-2测试的器件列表及其各自的保护配置

EC标准要求,通过将两个470 kΩ电阻与30 pF电容并联,使ESD源的接地端与放大器的接地端连接在一起。本测试的设置则更为严格,它将ESD源的接地端与放大器的接地端直接相连。这些结果也在IEC接地耦合方案中得到了验证,这可以进一步增强产品的可信赖度。请记住,由于放大器的内部结构存在很大不同,对本列表中的器件适用的数据可能适用,也可能不适用于其他器件。如果使用其他器件或其他保护元件,建议对其进行全面测试。

使用的保护元件:

电阻:Panasonic 0805 ERJ-P6系列

电容:Yageo 0805 100 V C0G/NPO

TVS二极管:Bourns CDSOD323-T36SC(双向,36 V,极低漏电流,符合ESD、EFT和浪涌标准)

ESD压敏电阻:Bourns MLA系列,0603 26 V

BBonus元件:ESD压敏电阻

TVS二极管性能良好,可以经受无数次冲击。这对于EFT和浪涌保护非常不错,但是,如果您只需要ESD保护,不妨看看ESD压敏电阻,在达到某个电压值之前,它们都用作高压电阻,达到该电压值之后,它们转变为低压电阻,可以分流掉压敏电阻中的电能。

可采用与TVS二极管相同的配置。它们的泄漏更少,成本不到TVS二极管的一半。请注意,其设计并不要求经受数百次冲击,且其电阻会随着每次冲击下降。ESD压敏电阻也在上述产品上进行了测试,当串联电阻值约为TVS二极管所需值的两倍时,该压敏电阻的性能最佳。

这些产品只在ESD标准下进行过测试。EFT的独特之处在于,虽然电压不高(4 kV及以下),其冲击却是爆发式(5 kHz或以上),上升时间较慢(5 ns)。浪涌每次冲击的能量大约是EFT的1000倍,但速度只有波形的1/1000。如果还需要涵盖这些标准,请确保在这些保护元件的数据手册上表明,它们可以应对这个问题。

电路保护概述

虽然看起来事后在电路中添加RC滤波器或TVS二极管并不难,但请注意,本文中提到的所有其他因素会影响系统性能和保护级别。这包括布局、前端使用的器件,以及需要满足的IEC标准。如果您从开始就谨记这一点,就可以避免在系统设计的最后阶段可能出现需要重新设计的紧急状况。

来源:亚德诺半导体

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电子元件
    +关注

    关注

    94

    文章

    955

    浏览量

    55591
  • 模拟前端
    +关注

    关注

    3

    文章

    115

    浏览量

    29352
  • EOS
    EOS
    +关注

    关注

    0

    文章

    110

    浏览量

    20974
收藏 人收藏

    评论

    相关推荐

    BMS模拟前端芯片是什么

    BMS模拟前端芯片是一种专门设计用于电池管理系统(BMS)的关键电子元件。它位于BMS与电池之间的接口位置,负责电池相关模拟信号的采集、处理与转换,为后续的电池状态监控、能量管理以及安
    的头像 发表于 03-16 15:57 1798次阅读

    AFE模拟前端芯片是什么 AFE模拟前端芯片怎么用

    AFE模拟前端芯片,是一种关键的电子元件,位于信号处理链的最前端,扮演着信号转换与处理的重要角色。它主要负责接收来自各种传感器或其他模拟信号
    的头像 发表于 03-16 15:48 2163次阅读

    什么是模拟前端芯片技术 数字前端模拟前端的区别

    什么是模拟前端芯片技术 模拟前端芯片技术是一种涉及电子元件的技术,其核心在于模拟
    的头像 发表于 03-15 17:58 417次阅读

    什么是模拟前端芯片?它有哪些作用?

    模拟前端芯片,简称AFE芯片,是一种关键的电子元件,位于信号处理链的最前端,负责接收并处理模拟信号。这些信号可能来自各种传感器,如温度传感器
    的头像 发表于 03-15 15:33 354次阅读

    ESD对电子元件的影响 如何选择ESD保护元件

    ESD对电子元件的影响 如何选择ESD保护元件?为ESD保护选择正确的元件时需要考虑哪些因素? 静电放电(ESD)是指当两个带电物体或者带电
    的头像 发表于 03-07 15:48 184次阅读

    电子元件与材料影响因子是多少

    在现代科技的快速发展下,电子元件与材料的研究与应用成为了一项非常重要的领域。电子元件性能与材料的选择密切相关,不同的材料会对电子元件性能
    的头像 发表于 02-02 10:27 293次阅读

    电子元件与材料影响因子的关系

    电子元件与材料的影响因子之间存在密切的关系。在电子工程领域中,选择合适的材料对电子元件性能和可靠性有着重要影响。本文将探讨电子元件与材料影
    的头像 发表于 01-23 14:25 266次阅读

    电子元件焊点保护用什么?#pcb设计

    pcb电子元件
    泰达克电子材料
    发布于 :2023年12月28日 15:20:32

    电子元件的寿命期是多久

    电子元件的寿命取决于多个因素,包括元件的类型、工作条件、质量和使用环境等。以下是一些常见电子元件的寿命范围。
    的头像 发表于 10-27 11:20 1552次阅读

    基础电子元件有哪些?

    在深入电子电路研究之前,我们必须先熟悉基础电子元件电子元件作为电子信息时代的基础,包括电阻、电容、晶体管、开关和二极管等。下面简要介绍一些最常用的基本
    的头像 发表于 10-27 11:14 1478次阅读
    基础<b class='flag-5'>电子元件</b>有哪些?

    浮思特| 如何安全运输电子元件

    电子元件在运输和储存时需要妥善包装,以防止产品损坏和丢失,因此了解如何安全运输电子元件是很有必要的。 通过质量检验后,电子元件需要妥善包装以便运输和储存,防止产品损坏和丢失。 超过最小包装数量
    的头像 发表于 10-25 16:09 769次阅读
    浮思特| 如何安全运输<b class='flag-5'>电子元件</b>?

    电子元件失效分析

    电子元件电子设备和系统产品的最基本组成部分,其性能和可靠性对电子设备和系统的安全可靠运行至关重要。
    的头像 发表于 09-15 10:23 938次阅读
    <b class='flag-5'>电子元件</b>失效分析

    电子元件的保质期如何影响电子设备的性能

    电子元件电子设备的组成部分。它们是电子设备的构建模块。就像所有其他产品一样,电子元件也有保质期。您可能想知道保质期的真正含义是什么。在设计电子
    的头像 发表于 07-28 11:02 954次阅读

    diode是什么电子元件 diode的封装技术

    二极管(Diode)是一种常见的电子元件,用于电路中的整流、开关和保护等应用。它具有两个电极,分别是正极(阳极)和负极(阴极),并且具有以下特性
    的头像 发表于 07-27 16:09 2620次阅读

    常见电子元件

    电子元件
    学习电子知识
    发布于 :2023年07月24日 20:47:21