0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

MAC地址相关的7种配置示例

jf_qwOiugB3 来源:通信弱电交流学习 2023-09-15 09:35 次阅读

前言

MAC(Media Access Control)地址用来定义网络设备的位置。MAC地址由48比特长、12位的16进制数字组成,其中从左到右开始,0到23bit是厂商向IETF等机构申请用来标识厂商的代码,24到47bit由厂商自行分派,是各个厂商制造的所有网卡的一个唯一编号。

MAC地址可以分为3种类型:

物理MAC地址:这种类型的MAC地址唯一的标识了以太网上的一个终端,该地址为全球唯一的硬件地址;

广播MAC地址:全1的MAC地址为广播地址(FF-FF-FF-FF-FF-FF),用来表示LAN上的所有终端设备;

组播MAC地址:除广播地址外,第8bit为1的MAC地址为组播MAC地址(例如01-00-00-00-00-00),用来代表LAN上的一组终端。其中以01-80-c2开头的组播MAC地址叫BPDU MAC,一般作为协议报文的目的MAC地址标示某种协议报文。

本文主要介绍MAC地址相关的7种配置示例。

01配置静态MAC地址示例

组网需求

如图 1 所示,用户主机PC的MAC地址为0002-0002-0002,与Switch的GE1/0/1接口相连。Server服务器的MAC地址为0004-0004-0004,与Switch的GE1/0/2接口相连。用户主机PC和Server服务器均在VLAN2内通信。

为防止MAC地址攻击,在Switch的MAC表中为用户主机添加一条静态表项。

为防止非法用户假冒Server的MAC地址窃取重要用户信息,在Switch上为Server服务器添加一条静态MAC地址表项。

2d77d0e6-5365-11ee-a25d-92fbcf53809c.png

图 1 配置静态MAC表组网图

配置思路

采用如下的思路配置MAC表:

创建VLAN,并将接口加入到VLAN中,实现二层转发功能。

添加静态MAC地址表项,防止非法用户攻击。

操作步骤

添加静态MAC地址表项

# 创建VLAN2,将接口GigabitEthernet1/0/1、GigabitEthernet1/0/2加入VLAN2。

 system-view
[HUAWEI] sysname Switch
[Switch] vlan 2
[Switch-vlan2] quit
[Switch] interface gigabitethernet 1/0/1
[Switch-GigabitEthernet1/0/1] port link-type access
[Switch-GigabitEthernet1/0/1] port default vlan 2
[Switch-GigabitEthernet1/0/1] quit
[Switch] interface gigabitethernet 1/0/2
[Switch-GigabitEthernet1/0/2] port link-type access
[Switch-GigabitEthernet1/0/2] port default vlan 2
[Switch-GigabitEthernet1/0/2] quit

# 配置静态MAC地址表项。

[Switch] mac-address static 2-2-2 GigabitEthernet 1/0/1 vlan 2
[Switch] mac-address static 4-4-4 GigabitEthernet 1/0/2 vlan 2

验证配置结果

# 在任意视图下执行display mac-address static vlan 2命令,查看静态MAC表是否添加成功。

[Switch] display mac-address static vlan 2
------------------------------------------------------------------------------- 
MAC Address          VLAN/VSI/BD                 Learned-From        Type       
-------------------------------------------------------------------------------
0002-0002-0002       2/-/-                       GE1/0/1             static    
0004-0004-0004       2/-/-                       GE1/0/2             static

-------------------------------------------------------------------------------
Total items displayed  = 2

配置文件

Switch的配置文件

#
sysname Switch
#
vlan batch 2
#
interface GigabitEthernet1/0/1
 port link-type access
 port default vlan 2
#
interface GigabitEthernet1/0/2
 port link-type access
 port default vlan 2
#
mac-address static 0002-0002-0002 GigabitEthernet1/0/1 vlan 2
mac-address static 0004-0004-0004 GigabitEthernet1/0/2 vlan 2
#
return

02配置黑洞MAC地址示例

组网需求

如图 2所示,交换机Switch收到一个非法用户的访问,非法用户的MAC地址为0005-0005-0005,所属VLAN为VLAN3。通过指定该MAC地址为黑洞MAC,实现非法用户的过滤。

2d897102-5365-11ee-a25d-92fbcf53809c.png

图 2 配置黑洞MAC表组网图

配置思路

采用如下的思路配置MAC表:

创建VLAN,实现二层转发功能。

添加黑洞MAC表,防止MAC地址攻击。

操作步骤

添加黑洞MAC地址表项

# 创建VLAN3。

 system-view
[HUAWEI] sysname Switch
[Switch] vlan 3
[Switch-vlan3] quit

# 添加黑洞MAC地址表项。

[Switch] mac-address blackhole 0005-0005-0005 vlan 3

验证配置结果

# 在任意视图下执行display mac-address blackhole命令,查看黑洞MAC表是否添加成功。

[Switch] display mac-address blackhole
------------------------------------------------------------------------------- 
MAC Address    VLAN/VSI/BD                       Learned-From        Type       
------------------------------------------------------------------------------- 
0005-0005-0005 3/-/-                             -                   blackhole  
                                                                                
------------------------------------------------------------------------------- 
Total items displayed = 1

配置文件

Switch的配置文件

#
sysname Switch
#
vlan batch 3
#
mac-address blackhole 0005-0005-0005 vlan 3                                     
#
return

03配置基于接口的MAC地址学习限制示例

组网需求

如图 3 所示,用户网络1和用户网络2通过LSW与Switch相连,Switch连接LSW的接口为GE1/0/1。用户网络1和用户网络2分别属于VLAN10和VLAN20。在Switch上,为了控制接入用户数量,可以基于接口GE1/0/1配置MAC地址学习限制功能。

2d9c12b2-5365-11ee-a25d-92fbcf53809c.png

图 3 配置基于接口的MAC地址学习限制数组网图

配置思路

采用如下的思路配置基于接口的MAC地址学习限制:

创建VLAN,并将接口加入到VLAN中,实现二层转发功能。

配置基于接口的MAC地址学习限制,控制接入用户数量。

操作步骤

配置MAC地址学习限制

# 将GigabitEthernet1/0/1加入VLAN10和VLAN20。

 system-view
[HUAWEI] sysname Switch
[Switch] vlan batch 10 20
[Switch] interface gigabitethernet 1/0/1
[Switch-GigabitEthernet1/0/1] port link-type hybrid
[Switch-GigabitEthernet1/0/1] port hybrid tagged vlan 10 20

# 在接口GigabitEthernet1/0/1上配置MAC地址学习限制规则:最多可以学习100个MAC地址,超过最大MAC地址学习数量的报文丢弃,并进行告警提示。

[Switch-GigabitEthernet1/0/1] mac-limit maximum 100 action discard alarm enable
[Switch-GigabitEthernet1/0/1] return

验证配置结果

# 在任意视图下执行display mac-limit命令,查看MAC地址学习限制规则是否配置成功。

 display mac-limit
MAC limit is enabled                                                            
Total MAC limit rule count : 1                                                  
                                                                                
PORT                 VLAN/VSI         SLOT Maximum Rate(ms) Action  Alarm       
----------------------------------------------------------------------------    
GE1/0/1              -                -    100     -        discard enable

配置文件

以下仅给出Switch的配置文件。

#
sysname Switch
#
vlan batch 10 20
#
interface GigabitEthernet1/0/1
 port link-type hybrid
 port hybrid tagged vlan 10 20
 mac-limit maximum 100
#
return

04配置基于VLAN的MAC地址学习限制示例

组网需求

如图 4 所示,用户网络1通过LSW1与Switch相连,Switch的接口为GE1/0/1。用户网络2通过LSW2与Switch相连,Switch的接口为GE1/0/2。GE1/0/1、GE1/0/2同属于VLAN2。为控制接入用户数,对VLAN2进行MAC地址学习的限制。

2dadccaa-5365-11ee-a25d-92fbcf53809c.png

图 4 配置基于VLAN的MAC地址学习限制组网图

配置思路

采用如下的思路配置基于VLAN的MAC地址学习限制:

创建VLAN,并将接口加入到VLAN中,实现二层转发功能。

配置VLAN的MAC地址学习限制,实现防止MAC地址攻击,控制接入用户数量。

操作步骤

配置MAC地址学习限制

# 将GigabitEthernet1/0/1、GigabitEthernet1/0/2加入VLAN2。

 system-view
[HUAWEI] sysname Switch
[Switch] vlan 2
[Switch-vlan2] quit
[Switch] interface gigabitethernet 1/0/1
[Switch-GigabitEthernet1/0/1] port link-type hybrid
[Switch-GigabitEthernet1/0/1] port hybrid pvid vlan 2
[Switch-GigabitEthernet1/0/1] port hybrid untagged vlan 2
[Switch-GigabitEthernet1/0/1] quit
[Switch] interface gigabitethernet 1/0/2
[Switch-GigabitEthernet1/0/2] port link-type hybrid
[Switch-GigabitEthernet1/0/2] port hybrid pvid vlan 2
[Switch-GigabitEthernet1/0/2] port hybrid untagged vlan 2
[Switch-GigabitEthernet1/0/2] quit

# 在VLAN2上配置MAC地址学习限制规则:最多可以学习100个MAC地址,超过最大MAC地址学习数量的报文继续转发但不加入MAC地址表,并进行告警提示。

[Switch] vlan 2
[Switch-vlan2] mac-limit maximum 100 action forward alarm enable
[Switch-vlan2] return

验证配置结果

# 在任意视图下执行display mac-limit命令,查看MAC地址学习限制规则是否配置成功。

 display mac-limit
MAC limit is enabled
Total MAC limit rule count : 1

PORT                 VLAN/VSI      SLOT Maximum Rate(ms) Action  Alarm
----------------------------------------------------------------------------
-                    2                -    100     -     forward enable

配置文件

以下仅给出Switch的配置文件。

#
sysname Switch
#
vlan batch 2
#
vlan 2
 mac-limit maximum 100 action forward
#
interface GigabitEthernet1/0/1
 port link-type hybrid
 port hybrid pvid vlan 2
 port hybrid untagged vlan 2
#
interface GigabitEthernet1/0/2
 port link-type hybrid
 port hybrid pvid vlan 2
 port hybrid untagged vlan 2
#
return

05配置基于VSI的MAC地址学习限制示例

组网需求

如图 5,某企业机构,自建骨干网。为了保证骨干网的安全,在PE设备上通过配置基于VSI的MAC地址学习限制功能,实现对CE的接入控制。

2dbd7d44-5365-11ee-a25d-92fbcf53809c.png

图 5 配置基于VSI的MAC地址学习限制组网图

配置思路

采用如下的思路配置基于VSI的MAC地址学习限制:

在骨干网上配置路由协议实现互通。

在PE之间建立远端LDP会话。

在PE间建立传输业务数据所使用的隧道。

在PE上使能MPLS L2VPN。

在PE上创建VSI,指定信令为LDP。

在PE设备基于VSI配置MAC地址学习限制,完成对CE的接入控制。

操作步骤

配置各接口所属的VLAN以及相关接口IP地址

# 配置CE1。

 system-view
[HUAWEI] sysname CE1
[CE1] vlan 10
[CE1-vlan10] quit
[CE1] interface vlanif 10
[CE1-Vlanif10] ip address 10.1.1.1 255.255.255.0
[CE1-Vlanif10] quit
[CE1] interface gigabitethernet 1/0/0
[CE1-GigabitEthernet1/0/0] port link-type trunk
[CE1-GigabitEthernet1/0/0] port trunk allow-pass vlan 10
[CE1-GigabitEthernet1/0/0] quit

# 配置CE2。

 system-view
[HUAWEI] sysname CE2
[CE2] vlan 40
[CE2-vlan40] quit
[CE2] interface vlanif 40
[CE2-Vlanif40] ip address 10.1.1.2 255.255.255.0
[CE2-Vlanif40] quit
[CE2] interface gigabitethernet 1/0/0
[CE2-GigabitEthernet1/0/0] port link-type trunk
[CE2-GigabitEthernet1/0/0] port trunk allow-pass vlan 40
[CE2-GigabitEthernet1/0/0] quit

# 配置PE1。

 system-view
[HUAWEI] sysname PE1
[PE1] vlan batch 10 20
[PE1] interface vlanif 20
[PE1-Vlanif20] ip address 4.4.4.4 255.255.255.0
[PE1-Vlanif20] quit
[PE1] interface gigabitethernet 1/0/0
[PE1-GigabitEthernet1/0/0] port link-type trunk
[PE1-GigabitEthernet1/0/0] port trunk allow-pass vlan 10
[PE1-GigabitEthernet1/0/0] quit
[PE1] interface gigabitethernet 2/0/0
[PE1-GigabitEthernet2/0/0] port link-type trunk
[PE1-GigabitEthernet2/0/0] port trunk allow-pass vlan 20
[PE1-GigabitEthernet2/0/0] quit

# 配置P。

 system-view
[HUAWEI] sysname P
[P] vlan batch 20 30
[P] interface vlanif 20
[P-Vlanif20] ip address 4.4.4.2 255.255.255.0
[P-Vlanif20] quit
[P] interface vlanif 30
[P-Vlanif30] ip address 5.5.5.5 255.255.255.0
[P-Vlanif30] quit
[P] interface gigabitethernet 1/0/0
[P-GigabitEthernet1/0/0] port link-type trunk
[P-GigabitEthernet1/0/0] port trunk allow-pass vlan 20
[P-GigabitEthernet1/0/0] quit
[P] interface gigabitethernet 2/0/0
[P-GigabitEthernet2/0/0] port link-type trunk
[P-GigabitEthernet2/0/0] port trunk allow-pass vlan 30
[P-GigabitEthernet2/0/0] quit

# 配置PE2。

 system-view
[HUAWEI] sysname PE2
[PE2] vlan batch 30 40
[PE2] interface vlanif 30
[PE2-Vlanif30] ip address 5.5.5.2 255.255.255.0
[PE2-Vlanif30] quit
[PE2] interface gigabitethernet 1/0/0
[PE2-GigabitEthernet1/0/0] port link-type trunk
[PE2-GigabitEthernet1/0/0] port trunk allow-pass vlan 30
[PE2-GigabitEthernet1/0/0] quit
[PE2] interface gigabitethernet 2/0/0
[PE2-GigabitEthernet2/0/0] port link-type trunk
[PE2-GigabitEthernet2/0/0] port trunk allow-pass vlan 40
[PE2-GigabitEthernet2/0/0] quit

配置IGP,本例中使用OSPF。

配置OSPF时,注意需要发布PE1、P和PE2的32位Loopback接口地址(LSR-ID)。

# 配置PE1。

[PE1] router id 1.1.1.1
[PE1] interface loopback 1
[PE1-LoopBack1] ip address 1.1.1.1 32
[PE1-LoopBack1] quit
[PE1] ospf 1
[PE1-ospf-1] area 0
[PE1-ospf-1-area-0.0.0.0] network 1.1.1.1 0.0.0.0
[PE1-ospf-1-area-0.0.0.0] network 4.4.4.4 0.0.0.255
[PE1-ospf-1-area-0.0.0.0] quit
[PE1-ospf-1] quit

# 配置P。

[P] router id 2.2.2.2
[P] interface loopback 1
[P-LoopBack1] ip address 2.2.2.2 32
[P-LoopBack1] quit
[P] ospf 1
[P-ospf-1] area 0
[P-ospf-1-area-0.0.0.0] network 2.2.2.2 0.0.0.0
[P-ospf-1-area-0.0.0.0] network 4.4.4.2 0.0.0.255
[P-ospf-1-area-0.0.0.0] network 5.5.5.5 0.0.0.255
[P-ospf-1-area-0.0.0.0] quit
[P-ospf-1] quit

# 配置PE2。

[PE2] router id 3.3.3.3
[PE2] interface loopback 1
[PE2-LoopBack1] ip address 3.3.3.3 32
[PE2-LoopBack1] quit
[PE2] ospf 1
[PE2-ospf-1] area 0
[PE2-ospf-1-area-0.0.0.0] network 3.3.3.3 0.0.0.0
[PE2-ospf-1-area-0.0.0.0] network 5.5.5.2 0.0.0.255
[PE2-ospf-1-area-0.0.0.0] quit
[PE2-ospf-1] quit

配置完成后,在PE1、P和PE2上执行display ip routing-table命令可以看到已学到彼此的路由。以PE1的显示为例:

[PE1] display ip routing-table                                                   
Route Flags: R - relay, D - download to fib, T - to vpn-instance                                     
------------------------------------------------------------------------------  
Routing Tables: Public                                                          
         Destinations : 8       Routes : 8                                      
                                                                                
Destination/Mask    Proto   Pre  Cost      Flags NextHop         Interface      
                                                                                
        1.1.1.1/32  Direct  0    0           D   127.0.0.1       LoopBack1      
        2.2.2.2/32  OSPF    10   1           D   4.4.4.2         Vlanif20       
        3.3.3.3/32  OSPF    10   2           D   4.4.4.2         Vlanif20       
        4.4.4.0/24  Direct  0    0           D   4.4.4.4         Vlanif20       
        4.4.4.4/32  Direct  0    0           D   127.0.0.1       Vlanif20       
        5.5.5.0/24  OSPF    10   2           D   4.4.4.2         Vlanif20       
      127.0.0.0/8   Direct  0    0           D   127.0.0.1       InLoopBack0    
      127.0.0.1/32  Direct  0    0           D   127.0.0.1       InLoopBack0

配置MPLS基本能力和LDP

# 配置PE1

[PE1] mpls lsr-id 1.1.1.1
[PE1] mpls
[PE1-mpls] quit
[PE1] mpls ldp
[PE1-mpls-ldp] quit
[PE1] interface vlanif 20
[PE1-Vlanif20] mpls
[PE1-Vlanif20] mpls ldp
[PE1-Vlanif20] quit

# 配置P

[P] mpls lsr-id 2.2.2.2
[P] mpls
[P-mpls] quit
[P] mpls ldp
[P-mpls-ldp] quit
[P] interface vlanif 20
[P-Vlanif20] mpls
[P-Vlanif20] mpls ldp
[P-Vlanif20] quit
[P] interface vlanif 30
[P-Vlanif30] mpls
[P-Vlanif30] mpls ldp
[P-Vlanif30] quit

# 配置PE2

[PE2] mpls lsr-id 3.3.3.3
[PE2] mpls
[PE2-mpls] quit
[PE2] mpls ldp
[PE2-mpls-ldp] quit
[PE2] interface vlanif 30
[PE2-Vlanif30] mpls
[PE2-Vlanif30] mpls ldp
[PE2-Vlanif30] quit

配置完成后,在PE1、P和PE2上执行display mpls ldp session命令可以看到PE1和P之间或PE2和P之间的对等体的Status项为“Operational”,即对等体关系已建立。执行display mpls lsp命令可以看到LSP的建立情况。以PE1的显示为例:

[PE1] display mpls ldp session

 LDP Session(s) in Public Network
 Codes: LAM(Label Advertisement Mode), SsnAge Unit(DDDDMM)
 A '*' before a session means the session is being deleted.
 ------------------------------------------------------------------------------
 PeerID            Status      LAM  SsnRole  SsnAge      KASent/Rcv
 ------------------------------------------------------------------------------
 2.2.2.2:0          Operational DU Passive  00029   3717/3717
 ------------------------------------------------------------------------------
 TOTAL: 1 session(s) Found.

在PE之间建立远端LDP会话

# 配置PE1。

[PE1] mpls ldp remote-peer 3.3.3.3
[PE1-mpls-ldp-remote-3.3.3.3] remote-ip 3.3.3.3
[PE1-mpls-ldp-remote-3.3.3.3] quit

# 配置PE2。

[PE2] mpls ldp remote-peer 1.1.1.1
[PE2-mpls-ldp-remote-1.1.1.1] remote-ip 1.1.1.1
[PE2-mpls-ldp-remote-1.1.1.1] quit

配置完成后,在PE1或PE2上执行display mpls ldp session命令可以看到PE1和PE2之间的对等体的Status项为“Operational”,即远端对等体关系已建立。

在PE上使能MPLS L2VPN

# 配置PE1。

[PE1] mpls l2vpn
[PE1-l2vpn] quit

# 配置PE2。

[PE2] mpls l2vpn
[PE2-l2vpn] quit

在PE上配置VSI

# 配置PE1。

[PE1] vsi a2 static
[PE1-vsi-a2] pwsignal ldp
[PE1-vsi-a2-ldp] vsi-id 2
[PE1-vsi-a2-ldp] peer 3.3.3.3
[PE1-vsi-a2-ldp] quit
[PE1-vsi-a2] quit

# 配置PE2。

[PE2] vsi a2 static
[PE2-vsi-a2] pwsignal ldp
[PE2-vsi-a2-ldp] vsi-id 2
[PE2-vsi-a2-ldp] peer 1.1.1.1
[PE2-vsi-a2-ldp] quit
[PE2-vsi-a2] quit

在PE上配置VSI与接口的绑定

# 配置PE1。

[PE1] interface vlanif 10
[PE1-Vlanif10] l2 binding vsi a2
[PE1-Vlanif10] quit

# 配置PE2。

[PE2] interface vlanif 40
[PE2-Vlanif40] l2 binding vsi a2
[PE2-Vlanif40] quit

验证配置结果

完成上述配置后,在PE1上执行display vsi name a2 verbose命令,可以看到名字为a2的VSI建立了一条PW到PE2,VSI状态为UP。

[PE1] display vsi name a2 verbose

 ***VSI Name               : a2
    Administrator VSI      : no
    Isolate Spoken         : disable
    VSI Index              : 0
    PW Signaling           : ldp
    Member Discovery Style : static
    PW MAC Learn Style     : unqualify
    Encapsulation Type     : vlan
    MTU                    : 1500
    Diffserv Mode          : uniform
    Mpls Exp               : --
    DomainId               : 255
    Domain Name            :
    Ignore AcState         : disable
    P2P VSI                : disable
    Create Time            : 0 days, 0 hours, 5 minutes, 1 seconds
    VSI State              : up

    VSI ID                 : 2
   *Peer Router ID         : 3.3.3.3
    Negotiation-vc-id      : 2
    primary or secondary   : primary
    ignore-standby-state   : no
    VC Label               : 4098
    Peer Type              : dynamic
    Session                : up
    Tunnel ID              : 0x1
    Broadcast Tunnel ID    : 0x1
    Broad BackupTunnel ID  : 0x0
    CKey                   : 2
    NKey                   : 1
    Stp Enable             : 0
    PwIndex                : 0
    Control Word           : disable

    Interface Name         : Vlanif10
    State                  : up
    Access Port            : false
    Last Up Time           : 2010/12/30 1118
    Total Up Time          : 0 days, 0 hours, 1 minutes, 35 seconds

    **PW Information:

   *Peer Ip Address        : 3.3.3.3
    PW State               : up
    Local VC Label         : 4098
    Remote VC Label        : 4098
    Remote Control Word    : disable
    PW Type                : label
    Local  VCCV            : alert lsp-ping bfd
    Remote VCCV            : alert lsp-ping bfd
    Tunnel ID              : 0x1
    Broadcast Tunnel ID    : 0x1
    Broad BackupTunnel ID  : 0x0
    Ckey                   : 0x2
    Nkey                   : 0x1
    Main PW Token          : 0x1
    Slave PW Token         : 0x0
    Tnl Type               : LSP
    OutInterface           : Vlanif20
    Backup OutInterface    :
    Stp Enable             : 0
    PW Last Up Time        : 2010/12/30 1103
    PW Total Up Time       : 0 days, 0 hours, 1 minutes, 35 seconds

在CE1(10.1.1.1)上能够ping通CE2(10.1.1.2)。

[CE1] ping 10.1.1.2
  PING 10.1.1.2: 56  data bytes, press CTRL_C to break
    Reply from 10.1.1.2: bytes=56 Sequence=1 ttl=255 time=90 ms
    Reply from 10.1.1.2: bytes=56 Sequence=2 ttl=255 time=77 ms
    Reply from 10.1.1.2: bytes=56 Sequence=3 ttl=255 time=34 ms
    Reply from 10.1.1.2: bytes=56 Sequence=4 ttl=255 time=46 ms
    Reply from 10.1.1.2: bytes=56 Sequence=5 ttl=255 time=94 ms

  --- 10.1.1.2 ping statistics ---
    5 packet(s) transmitted
    5 packet(s) received
    0.00% packet loss
    round-trip min/avg/max = 34/68/94 ms

在PE1的VSI上配置MAC地址学习限制

# 在VSI上配置MAC地址学习限制规则:最多可以学习300个MAC地址,超过最大MAC地址学习数量的报文直接丢弃并进行告警提示。

[PE1] vsi a2 static
[PE1-vsi-a2] mac-limit maximum 300 action discard alarm enable
[PE1-vsi-a2] return

验证配置结果

# 在任意视图下执行display mac-limit命令,查看MAC地址学习限制规则是否配置成功。

 display mac-limit
MAC limit is enabled
Total MAC limit rule count : 1

PORT                 VLAN/VSI      SLOT Maximum Rate(ms) Action  Alarm
----------------------------------------------------------------------------
-                    a2            -    300     -        discard enable

配置文件

CE1的配置文件

#
sysname CE1
#
vlan batch 10
#
interface Vlanif10
 ip address 10.1.1.1 255.255.255.0
#
interface GigabitEthernet1/0/0
 port link-type trunk
 port trunk allow-pass vlan 10
#
return

CE2的配置文件

#
sysname CE2
#
vlan batch 40
#
interface Vlanif40
 ip address 10.1.1.2 255.255.255.0
#
interface GigabitEthernet1/0/0
 port link-type trunk
 port trunk allow-pass vlan 40
#
return

PE1的配置文件

#
sysname PE1
#
router id 1.1.1.1
#
vlan batch 10 20
#
mpls lsr-id 1.1.1.1
mpls
#
mpls l2vpn
#
vsi a2 static 
 mac-limit maximum 300
 pwsignal ldp 
  vsi-id 2    
  peer 3.3.3.3
# 
mpls ldp
#
mpls ldp remote-peer 3.3.3.3
 remote-ip 3.3.3.3
#
interface Vlanif10
 l2 binding vsi a2
#
interface Vlanif20
 ip address 4.4.4.4 255.255.255.0
 mpls
 mpls ldp
#
interface GigabitEthernet1/0/0
 port link-type trunk
 port trunk allow-pass vlan 10
#
interface GigabitEthernet2/0/0
 port link-type trunk
 port trunk allow-pass vlan 20
#
interface LoopBack1
 ip address 1.1.1.1 255.255.255.255
#
ospf 1
 area 0.0.0.0
  network 1.1.1.1 0.0.0.0
  network 4.4.4.0 0.0.0.255
#
return

P的配置文件

#
sysname P
#
router id 2.2.2.2
#
vlan batch 20 30
#
mpls lsr-id 2.2.2.2
mpls
#
mpls ldp
#
interface Vlanif20
 ip address 4.4.4.2 255.255.255.0
 mpls
 mpls ldp
#
interface Vlanif30
 ip address 5.5.5.5 255.255.255.0
 mpls
 mpls ldp
#
interface GigabitEthernet1/0/0
 port link-type trunk
 port trunk allow-pass vlan 20
#
interface GigabitEthernet2/0/0
 port link-type trunk
 port trunk allow-pass vlan 30
#
interface LoopBack1
 ip address 2.2.2.2 255.255.255.255
#
ospf 1
 area 0.0.0.0
  network 2.2.2.2 0.0.0.0
  network 4.4.4.0 0.0.0.255
  network 5.5.5.0 0.0.0.255
#
return

PE2的配置文件

#
sysname PE2
#
router id 3.3.3.3
#
vlan batch 30 40
#
mpls lsr-id 3.3.3.3
mpls
#
mpls l2vpn
#
vsi a2 static
 pwsignal ldp
  vsi-id 2
  peer 1.1.1.1
#
mpls ldp
#
mpls ldp remote-peer 1.1.1.1
 remote-ip 1.1.1.1
#
interface Vlanif30
 ip address 5.5.5.2 255.255.255.0
 mpls
 mpls ldp
#
interface Vlanif40
 l2 binding vsi a2
#
interface GigabitEthernet1/0/0
 port link-type trunk
 port trunk allow-pass vlan 30
#
interface GigabitEthernet2/0/0
 port link-type trunk
 port trunk allow-pass vlan 40
#
interface LoopBack1
 ip address 3.3.3.3 255.255.255.255
#
ospf 1
 area 0.0.0.0
  network 3.3.3.3 0.0.0.0
  network 5.5.5.0 0.0.0.255
#
return

06配置MAC防漂移示例

组网需求

某企业网络中,用户需要访问企业的服务器。如果某些非法用户从其他接口假冒服务器的MAC地址发送报文,则服务器的MAC地址将在其他接口学习到。这样用户发往服务器的报文就会发往非法用户,不仅会导致用户与服务器不能正常通信,还会导致一些重要用户信息被窃取。

如图 6 所示,为了提高服务器安全性,防止被非法用户攻击,可配置MAC防漂移功能。

2dcfe6a0-5365-11ee-a25d-92fbcf53809c.png

图 6 配置MAC防漂移组网图

配置思路

采用如下的思路配置MAC防漂移:

创建VLAN,并将接口加入到VLAN中,实现二层转发功能。

在服务器连接的接口上配置MAC防漂移功能,实现MAC地址防漂移。

操作步骤

创建VLAN,并将接口加入到VLAN中。

# 将GigabitEthernet1/0/1、GigabitEthernet1/0/2加入VLAN10。

 system-view
[HUAWEI] sysname Switch
[Switch] vlan 10
[Switch-vlan10] quit
[Switch] interface gigabitethernet 1/0/2
[Switch-GigabitEthernet1/0/2] port link-type trunk
[Switch-GigabitEthernet1/0/2] port trunk allow-pass vlan 10 
[Switch-GigabitEthernet1/0/2] quit
[Switch] interface gigabitethernet 1/0/1
[Switch-GigabitEthernet1/0/1] port link-type hybrid
[Switch-GigabitEthernet1/0/1] port hybrid pvid vlan 10
[Switch-GigabitEthernet1/0/1] port hybrid untagged vlan 10

# 在GigabitEthernet1/0/1上配置MAC地址学习的优先级为2。

[Switch-GigabitEthernet1/0/1] mac-learning priority 2
[Switch-GigabitEthernet1/0/1] quit

验证配置结果

# 在任意视图下执行display current-configuration命令,查看接口MAC地址学习的优先级配置是否正确。

[Switch] display current-configuration interface gigabitethernet 1/0/1
#
interface GigabitEthernet1/0/1
 port link-type hybrid
 port hybrid pvid vlan 10
 port hybrid untagged vlan 10
 mac-learning priority 2
#
return

配置文件

Switch的配置文件

#
sysname Switch
#
vlan batch 10
#
interface GigabitEthernet1/0/1
 port link-type hybrid
 port hybrid pvid vlan 10
 port hybrid untagged vlan 10
 mac-learning priority 2
#
interface GigabitEthernet1/0/2
 port link-type trunk
 port trunk allow-pass vlan 10
#
return

07配置MAC地址漂移检测示例

组网需求

如图 7 所示,网络中两台LSW间网线误接形成了网络环路,引起MAC地址发生漂移、MAC地址表震荡。

为了能够及时检测网络中出现的环路,可以在Switch上配置MAC地址漂移检测功能,通过检测是否发生MAC地址漂移来判断网络中存在的环路,从而排除故障。

2ded643c-5365-11ee-a25d-92fbcf53809c.png

图 7 配置MAC地址漂移检测应用组网图

配置思路

采用如下思路配置MAC地址漂移检测功能:

开启MAC地址漂移检测功能,实现检测网络中是否存在MAC地址漂移。

配置MAC地址漂移表项的老化时间。

配置接口MAC地址漂移后的处理动作,实现破除环路。

操作步骤

#开启MAC地址漂移检测功能

 system-view
[HUAWEI] sysname Switch
[Switch] mac-address flapping detection

#配置MAC地址漂移表项的老化时间

[Switch] mac-address flapping aging-time 500

#配置GE1/0/1、GE1/0/2接口MAC地址漂移后关闭

[Switch] interface gigabitethernet 1/0/1
[Switch-GigabitEthernet1/0/1] mac-address flapping action error-down
[Switch-GigabitEthernet1/0/1] quit
[Switch] interface gigabitethernet 1/0/2
[Switch-GigabitEthernet1/0/2] mac-address flapping action error-down
[Switch-GigabitEthernet1/0/2] quit

#配置被Shutdown接口的自动恢复功能、自动恢复时间

[Switch] error-down auto-recovery cause mac-address-flapping interval 500

#检查配置结果

配置完成后,当接口GE1/0/1的MAC地址漂移到接口GE1/0/2后,接口GE1/0/2关闭;使用display mac-address flapping record可查看到漂移记录。

[Switch] display mac-address flapping record
 S  : start time                                                                
 E  : end time                                                                  
(Q) : quit vlan                                                                 
(D) : error down 
-------------------------------------------------------------------------------
Move-Time                 VLAN MAC-Address     Original-Port    Move-Ports   MoveNum
-------------------------------------------------------------------------------
S:2012-04-01 1736     1    0000-0000-0007  GE1/0/1         GE1/0/2(D)   83
E:2012-04-01 1744

-------------------------------------------------------------------------------
Total items on slot 1: 1

配置文件

Switch的配置文件

#
sysname Switch
#                                                                               
error-down auto-recovery cause mac-address-flapping interval 500  
#                                                                               
mac-address flapping aging-time 500    
#
interface GigabitEthernet1/0/1
 mac-address flapping action error-down    
#
interface GigabitEthernet1/0/2
 mac-address flapping action error-down    
#
return

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 接口
    +关注

    关注

    33

    文章

    7640

    浏览量

    148507
  • 服务器
    +关注

    关注

    12

    文章

    8120

    浏览量

    82522
  • Mac
    Mac
    +关注

    关注

    0

    文章

    1067

    浏览量

    50845
  • 网络设备
    +关注

    关注

    0

    文章

    266

    浏览量

    29351

原文标题:7种常用的MAC地址配置方法,你会几种?

文章出处:【微信号:通信弱电交流学习,微信公众号:通信弱电交流学习】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    CC2530的MAC地址疑惑

    请问TI的大神,小弟在看了CC2530相关MAC地址相关后,有如下认识。 ZigBee设备启动时,决定MAC
    发表于 08-08 07:19

    当堆栈被配置为空Mac地址时,无法理解Mac地址从何而来

    当堆栈被配置为空Mac地址时,我无法理解Mac地址从何而来。在TCPIP_NETWORK_CONFIG结构中,如果macAddr字段设置为0
    发表于 09-20 13:26

    MAC地址

    MAC地址  MAC(Media Access Control, 介质访问控制)地址是识别LAN(局域网)节点的标识。网卡的物理地址
    发表于 12-26 12:06 1198次阅读

    mac_mac地址是什么

    mac地址是什么?本内容介绍了mac地址的作用及运用,MAC(Medium/Media Access Control)
    发表于 12-14 15:50 3646次阅读
    <b class='flag-5'>mac_mac</b><b class='flag-5'>地址</b>是什么

    10-MAC地址表特性配置命令

    MAC地址表特性配置命令
    发表于 12-17 10:44 2次下载

    三层交换机MAC地址表特性配置

    11-MAC地址表特性配置
    发表于 12-25 00:08 0次下载

    交换机MAC地址表特性配置

    交换机MAC地址表特性配置
    发表于 12-27 16:15 0次下载

    mac地址和ip地址有什么区别

    首先,说明一下MAC地址是啥?MAC地址MAC(Media Access Control)协议所使用的
    发表于 03-06 14:17 8477次阅读

    mac地址是什么_mac地址有什么用

    MAC(Media Access Control, 介质访问控制)MAC地址是烧录在Network Interface Card(网卡,NIC)里的.MAC
    发表于 03-06 15:04 1.9w次阅读

    MAC地址是什么

    MAC地址(Media Access Control Address),直译为媒体访问控制地址,也称为局域网地址(LAN Address),以太网
    的头像 发表于 02-14 14:17 3.7w次阅读

    分布式系统中MAC地址和IP地址的动态配置方法

    以太网以其简单灵活、成熟稳定的特性成为许多分布式系统[-]内部通信的首选方式。在这些系统内部采用的以太网结构中,如何合理利用与配置地址信息(包括MAC地址和IP
    的头像 发表于 06-17 14:03 3604次阅读
    分布式系统中<b class='flag-5'>MAC</b><b class='flag-5'>地址</b>和IP<b class='flag-5'>地址</b>的动态<b class='flag-5'>配置</b>方法

    MAC地址申请MAC码购买流程MAC地址哪里申请MAC地址作用

    众所周知mac地址号段全世界都是由美国一家政府机构IEEE进行分配的,也是由他们进行管理的。我站具有丰富的MAC地址申请经验,可以帮助客户有效的快速高效的完成
    的头像 发表于 03-01 17:00 2110次阅读
    <b class='flag-5'>MAC</b><b class='flag-5'>地址</b>申请<b class='flag-5'>MAC</b>码购买流程<b class='flag-5'>MAC</b><b class='flag-5'>地址</b>哪里申请<b class='flag-5'>MAC</b><b class='flag-5'>地址</b>作用

    MAC地址注册的原理和应用

    MAC地址注册是指在网络设备中,将设备的物理地址(即MAC地址)与设备的IP地址进行关联和注册的
    的头像 发表于 11-13 16:07 526次阅读
    <b class='flag-5'>MAC</b><b class='flag-5'>地址</b>注册的原理和应用

    为什么同时需要IP和MAC地址

    MAC是网络中用来标识网卡设备的唯一网络地址。由相关硬件制造商统一分配,每台电脑的MAC地址都是唯一的。
    发表于 11-14 09:32 472次阅读
    为什么同时需要IP和<b class='flag-5'>MAC</b><b class='flag-5'>地址</b>?

    如何绑定ip地址mac物理地址呢?

    如何绑定ip地址mac物理地址呢? 绑定IP地址MAC物理地址是一种网络管理和安全措施,可以
    的头像 发表于 12-07 09:33 1284次阅读