0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

卷积神经网络包括哪几层

工程师邓生 来源:未知 作者:刘芹 2023-08-17 16:30 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

卷积神经网络包括哪几层

卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,通常被应用于图像识别和语音识别等领域。它的设计灵感来源于生物神经系统,可以自动从数据中提取特征并执行分类任务。CNN包括以下几层:

一、输入层(Input Layer)

输入层是CNN网络的第一层。它接受原始的图像或数据,并将其传递给下一层进行处理。在图像分类中,输入层通常是一个矩阵,每个元素代表像素的强度值。

二、卷积层(Convolutional Layer)

卷积层是CNN网络的核心层之一。卷积操作是指将一个小的滤波器(filter)在输入上滑动,并在每个位置进行点乘,并将结果汇集到一个输出特征图中。卷积操作有助于提取原始图像中的特征,例如边缘、纹理和形状等。

三、激活层(Activation Layer)

激活函数是对每个卷积层中的输出进行非线性变换的函数。它的作用是引入非线性,从而使神经网络能够学习更加复杂的关系。常见的激活函数包括ReLU、Sigmoid和tanh等。

四、池化层(Pooling Layer)

池化层通常紧随卷积层之后。它的作用是通过对输入进行下采样来减少输出特征图的维度大小,并在一定程度上降低模型的复杂度。常见的池化方法包括Max Pooling和Average Pooling。

五、全连接层(Fully Connected Layer)

全连接层通常在卷积和池化层之后。它采用标准的神经网络结构,将上一层的输出连接到下一层,并用于类别分类和标签生成等任务。

六、输出层(Output Layer)

输出层是CNN网络的最后一层。它的作用是输出模型的预测结果。在分类任务中,输出层可以是softmax层,将输出解释为一个概率分布,并使用概率分布来预测图像的类别。

以上是常见的CNN网络层次结构,每个层都对输入进行不同的变换,并且可以通过不同的参数和超参数进行微调。CNN可以通过多个层级的组合来更好地捕捉图像的特征,并即使在缺失数据的情况下仍然能够进行分类。CNN已经在许多领域得到了广泛的应用,包括图像识别、自然语言处理以及人工智能等。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4827

    浏览量

    106797
  • 卷积神经网络

    关注

    4

    文章

    371

    浏览量

    12716
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    自动驾驶中常提的卷积神经网络是个啥?

    在自动驾驶领域,经常会听到卷积神经网络技术。卷积神经网络,简称为CNN,是一种专门用来处理网格状数据(比如图像)的深度学习模型。CNN在图像处理中尤其常见,因为图像本身就可以看作是由像
    的头像 发表于 11-19 18:15 1833次阅读
    自动驾驶中常提的<b class='flag-5'>卷积</b><b class='flag-5'>神经网络</b>是个啥?

    CNN卷积神经网络设计原理及在MCU200T上仿真测试

    CNN算法简介 我们硬件加速器的模型为Lenet-5的变型,网络粗略分共有7层,细分共有13层。包括卷积,最大池化层,激活层,扁平层,全连接层。下面是各层作用介绍: 卷积层:提取
    发表于 10-29 07:49

    NMSIS神经网络库使用介绍

    :   神经网络卷积函数   神经网络激活函数   全连接层函数   神经网络池化函数   Softmax 函数   神经网络支持功能
    发表于 10-29 06:08

    卷积运算分析

    的数据,故设计了ConvUnit模块实现单个感受域规模的卷积运算. 卷积运算:不同于数学当中提及到的卷积概念,CNN神经网络中的卷积严格意义
    发表于 10-28 07:31

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    模型。 我们使用MNIST数据集,训练一个卷积神经网络(CNN)模型,用于手写数字识别。一旦模型被训练并保存,就可以用于对新图像进行推理和预测。要使用生成的模型进行推理,可以按照以下步骤进行操作: 1.
    发表于 10-22 07:03

    CICC2033神经网络部署相关操作

    读取。接下来需要使用扩展指令,完成神经网络的部署,此处仅对第一层卷积+池化的部署进行说明,其余层与之类似。 1.使用 Custom_Dtrans 指令,将权重数据、输入数据导入硬件加速器内。对于权重
    发表于 10-20 08:00

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    1.算法简介液态神经网络(LiquidNeuralNetworks,LNN)是一种新型的神经网络架构,其设计理念借鉴自生物神经系统,特别是秀丽隐杆线虫的神经结构,尽管这种微生物的
    的头像 发表于 09-28 10:03 704次阅读
    液态<b class='flag-5'>神经网络</b>(LNN):时间连续性与动态适应性的<b class='flag-5'>神经网络</b>

    卷积神经网络如何监测皮带堵料情况 #人工智能

    卷积神经网络
    jf_60804796
    发布于 :2025年07月01日 17:08:42

    自动驾驶感知系统中卷积神经网络原理的疑点分析

    背景 卷积神经网络(Convolutional Neural Networks, CNN)的核心技术主要包括以下几个方面:局部连接、权值共享、多卷积核以及池化。这些技术共同作用,使得C
    的头像 发表于 04-07 09:15 641次阅读
    自动驾驶感知系统中<b class='flag-5'>卷积</b><b class='flag-5'>神经网络</b>原理的疑点分析

    BP神经网络卷积神经网络的比较

    BP神经网络卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈
    的头像 发表于 02-12 15:53 1307次阅读

    BP神经网络的优缺点分析

    BP神经网络(Back Propagation Neural Network)作为一种常用的机器学习模型,具有显著的优点,同时也存在一些不容忽视的缺点。以下是对BP神经网络优缺点的分析: 优点
    的头像 发表于 02-12 15:36 1585次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播算法的介绍: 一、基本概念 反向传播算法是BP
    的头像 发表于 02-12 15:18 1274次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural N
    的头像 发表于 02-12 15:15 1340次阅读

    BP神经网络在图像识别中的应用

    传播神经网络(Back Propagation Neural Network),是一种多层前馈神经网络,主要通过反向传播算法进行学习。它通常包括输入层、一个或多个隐藏层和输出层。BP神经网络
    的头像 发表于 02-12 15:12 1188次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工神经网络模型之所
    的头像 发表于 01-09 10:24 2247次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法