0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

蔡司扫描电镜下金刚石形貌

jf_57082133 来源:jf_57082133 作者:jf_57082133 2023-08-04 11:50 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

金刚石矿物的晶体结构属于等轴晶系同极键四面体结构。碳原子位于四面体的角部和中心,具有高度的对称性。晶胞中的碳原子以同极键连接,距离为154pm。。常见的晶形有八面体、菱形十二面体、立方体、四面体和六面体等。钻石的应用范围非常广泛,例如:工艺品和工业中的切割工具。石墨在高温高压下能形成人造金刚石,也是一种珍贵的宝石。中国也有制造钻石的技术。需要注意的是,石墨和金刚石的物理性质是完全不同的。钻石有各种颜色,从无色到黑色,无色是最好的。它们可以是透明的、半透明的或不透明的,纳米金刚石。许多钻石呈淡黄色,主要是由于钻石中的杂质。钻石的折射率很高,色散性能也很强,这就是为什么钻石反射出七彩的闪光。钻石在X射线照射下发出蓝绿色荧光。钻石一般呈颗粒状,颜色取决于纯度、所含杂质元素的种类和含量,而极纯的是无色的,一般呈现不同程度的黄色、褐色、灰色、绿色、蓝色、乳白色和紫色等。纯的是透明的、含杂质的半透明或不透明的。阴极射线、X射线和紫外线照射下,会发出绿色、天蓝色、紫色、黄绿色等不同颜色的荧光。暴露在阳光下后,在黑暗的房间里发出浅蓝色磷光。

wKgaomTMdU2AMvmyAAcHNTFFbO0214.png

本文采用超高分辨率蔡司扫描电子显微镜对金刚石材料的微观形貌进行了观察。从图中我们可以看出,金刚石具有多面体结构,而且粒度分布比较均匀,大小在几十微米左右。由于金刚石是自然界中最坚硬的物质,所以它有许多重要的工业用途,如精细磨料、高硬度切削工具、各种钻头、拉丝模具等。钻石也被用作许多精密仪器的一部分。

wKgZomTMdVGAHfu1AAOuFv6tdOw908.png

综上所述,蔡司扫描电镜不仅能带领你领略到扫描电镜下金刚石独特的微观世界,还能开阔你的视野。如果您有其他感兴趣的样品,请让Zeiss SEM带您去了解。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 扫描电镜
    +关注

    关注

    0

    文章

    119

    浏览量

    9833
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    sem扫描电镜是测什么的?哪些学科领域会经常使用到扫描电镜

    SEM扫描电镜扫描电子显微镜,主要用于以下方面的检测:1、材料微观形貌观察-材料表面结构:可以清晰地观察到材料表面的微观结构,如金属材料的表面纹理、陶瓷材料的晶粒分布、高分子材料的表面形貌
    的头像 发表于 03-24 11:45 2875次阅读
    sem<b class='flag-5'>扫描电镜</b>是测什么的?哪些学科领域会经常使用到<b class='flag-5'>扫描电镜</b>?

    扫描电镜的日常维护有哪些注意事项?

    扫描电镜日常维护的注意事项。
    的头像 发表于 03-24 11:38 918次阅读
    <b class='flag-5'>扫描电镜</b>的日常维护有哪些注意事项?

    大尺寸单晶金刚石衬底制备技术突破与挑战

    ,碳原子密度 1.77×1023 cm-3, 碳-碳键长 0.154 nm, 键角 109°28′, 这种紧密堆积的结构使得金刚石拥有 348 kJ/mol 的高键能, 也由此赋予其诸多优异的性质,使其在各种极端环境的应用独占鳌头。  由表可见, 单晶
    的头像 发表于 03-08 10:49 1189次阅读
    大尺寸单晶<b class='flag-5'>金刚石</b>衬底制备技术突破与挑战

    SEM是扫描电镜吗?

    SEM是扫描电镜,英文全称为ScanningElectronMicroscope。以下是关于扫描电镜的一些基本信息:1、工作原理:扫描电镜是一种利用电子束扫描样品表面,通过检测电子与样
    的头像 发表于 02-24 09:46 1183次阅读
    SEM是<b class='flag-5'>扫描电镜</b>吗?

    化合积电推出硼掺杂单晶金刚石,推动金刚石器件前沿应用与开发

    【DT半导体】获悉,化合积电为了大力推动金刚石器件的应用和开发进程,推出硼掺杂单晶金刚石,响应广大客户在金刚石器件前沿研究的需求。 金刚石,作为超宽带隙半导体,被公认为终极功率半导体,
    的头像 发表于 02-19 11:43 1253次阅读
    化合积电推出硼掺杂单晶<b class='flag-5'>金刚石</b>,推动<b class='flag-5'>金刚石</b>器件前沿应用与开发

    金刚石-石墨烯异质结构涂层介绍

    金刚石和石墨烯固有的脆性和缺乏自我支撑能力限制了它们在耐用润滑系统中的应用。
    的头像 发表于 02-13 10:57 898次阅读
    <b class='flag-5'>金刚石</b>-石墨烯异质结构涂层介绍

    桌面式扫描电镜是什么?

    桌面式扫描电镜扫描电子显微镜的一种类型,它在结构设计、功能特点等方面都有自身独特之处,以下从其定义、原理、特点、应用场景等方面进行具体介绍:1、定义与基本原理-定义:桌面式扫描电镜是一种小型化
    的头像 发表于 02-12 14:47 909次阅读
    桌面式<b class='flag-5'>扫描电镜</b>是什么?

    扫描电镜有哪些作用?

    扫描电镜作为一种用于微观结构分析的重要仪器,在材料科学、生命科学、地质科学、电子信息等多个领域都有重要作用。它具有以下显著特征:1.高分辨率成像:能够清晰呈现样品表面的细微结构,分辨率可达纳米级
    的头像 发表于 02-12 14:42 1775次阅读
    <b class='flag-5'>扫描电镜</b>有哪些作用?

    优化单晶金刚石内部缺陷:高温退火技术

    领域应用广泛。 导热率高: 在电子器件中表现出色。 化学稳定性好: 在恶劣环境也能保持稳定。 然而,工业制备的单晶金刚石并非完美无瑕,常常存在以下问题: 缺陷多: 如氮杂质等,导致金刚石透明度低、色泽差。 光学性质差: 颜色
    的头像 发表于 02-08 10:51 1252次阅读
    优化单晶<b class='flag-5'>金刚石</b>内部缺陷:高温退火技术

    革新突破:高性能多晶金刚石散热片引领科技新潮流

    随着电子器件越来越小、功率越来越高,散热成为制约性能的“头号难题”。传统材料(如铜、硅)热导率有限,而金刚石的热导率是铜的 5倍 以上,堪称“散热王者”!但大尺寸高导热金刚石制备成本高、工艺复杂
    的头像 发表于 02-07 10:47 1697次阅读

    扫描电镜与氩离子抛光技术在样品成分分析的作用

    发射扫描电镜形貌观察和尺寸检测方面具有显著优势。它的简便性和可操作性强,使得研究人员能够更加直观地观察材料的微观结构,从而在科学研究和工业应用中发挥重要作用。样品
    的头像 发表于 12-31 11:57 843次阅读
    <b class='flag-5'>扫描电镜</b>与氩离子抛光技术在样品成分分析的作用

    探讨金刚石增强复合材料:金刚石/铜、金刚石/镁和金刚石/铝复合材料

    在当今科技飞速发展的时代,热管理材料的需求日益增长,特别是在电子封装、高功率设备等领域。金属基金刚石增强复合材料,以其独特的性能,成为了这一领域的新星。今天,我们就来详细探讨三种金刚石增强复合材料
    的头像 发表于 12-31 09:47 1863次阅读

    欧盟批准西班牙补贴金刚石晶圆厂

    欧盟委员会近日正式批准了西班牙政府对Diamond Foundry位于特鲁希略的金刚石晶圆制造厂提供的8100万欧元(约合6.15亿元人民币)补贴。这一决定为Diamond Foundry在该地
    的头像 发表于 12-27 11:16 958次阅读

    如何使用扫描电镜

    以下是使用扫描电镜的一般步骤:1、前期准备-样品准备:确保样品表面干净、平整,无油脂、灰尘等杂质。根据样品性质选择合适的探头,如金属样品可使用金属探头,非金属材料可使用碳纳米管探头等,并将样品固定
    的头像 发表于 12-25 14:25 1847次阅读
    如何使用<b class='flag-5'>扫描电镜</b>?

    探秘合成大尺寸单晶金刚石的路线与难题

    金刚石因其优异的机械、电学、热学和光学性能,展现出广阔的发展前景。然而,目前工业上通过高温高压法批量生产的单晶金刚石尺寸通常小于10毫米,这极大限制了其在许多领域的应用。因此,实现大尺寸金刚石的合成
    的头像 发表于 12-18 10:38 2049次阅读
    探秘合成大尺寸单晶<b class='flag-5'>金刚石</b>的路线与难题