0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

滨松涡旋光解决方案 :空间光调制器LCOS-SLM和科研相机

jf_64961214 来源:jf_64961214 作者:jf_64961214 2023-07-24 07:10 次阅读

涡旋光简介

光学中,有一类光束具有螺旋相位波前结构或者相位奇点的特殊光场分布,其波前沿传播方向上的轴螺旋前进,这种旋转导致光束在光轴处相互抵消,投影到一个平面上看起来像中心暗孔的光环,这类光波通常被称作"光学涡旋(Optical Vortices,简称OV)"。光学涡旋具有三大主要特性:螺旋相位波前结构、确定的光子轨道角动量(OAM)以及暗心结构。

首先,光学涡旋主要被应用光学微操纵技术。与传统方法相比,光学为操纵具有无接触、无损伤、可靠性高、重复性高、尺度小等特点,光子在对微观粒子的微操纵方面具有自己独特的优势。涡旋光束是具有螺旋形相位分布的光束,其表达式中带有相位因子,光束携带轨道角动量,其中 l 称为拓扑荷值。由于涡旋光束具有轨道角动量,所携带的轨道角动量可以传递给微粒,以驱动微粒旋转,还可以实现对微米、亚微米微粒的俘获、平移。

另外,涡旋光在信息编码上也有较大的应用前景,利用涡旋光束的轨道角动量可对信息进行编码与传输。这种新型的编码方式有很多独特的优点。普通计算机为0,1二进制编码,而涡旋光拓扑荷可任意改变,增加编码程度,可用于密码通信,具有以下两种优势。

1)由于拓扑荷值l的取值可以为整数,零,甚至分数,所以有很高的编码能力。

2)具有更高的保密性。

由于光子轨道角动量本征态在数学上构成了一组完备的正交基矢, 因此可以利用轨道角动量来实现高维信息的编码, 这种优势不仅体现在经典光通信领域, 也体现在量子通信领域。

涡旋光的产生

传统上涡旋光的产生主要有叉形光栅、螺旋相位版、柱透镜组合和集成轨道角动量发射器这几种方法。而随着技术的进步,空间光调制器(产品介绍)由于其可以实时高速刷新、针对多种不同波长、高精度和灵活性,成为了目前制备光子轨道角动量最广泛采用的设备。

wKgaomS9s0eASiURAABaA3_K0As831.png

平行高斯光入射,偏振方向为水平,和LCOS的液晶排列方向相同,垂直入射。经过SLM的调制,反射光经过透镜聚焦,之后由CCD观察光斑。SLM加载的相位为螺旋相位,所以调制之后的光的相位就是螺旋形的,用CCD观察的光斑上可以看到圆环中心清晰的奇点。SLM上加载的相位图可以变换拓扑荷值,例如下图所示拓扑荷值l分别为1,2,3。

wKgZomS9s0eAREt2AAB2yhlbFZc149.png

滨松可以提供免费的相位图生成软件,用户只需输入拓扑荷值,即可生成相应相位图。

wKgaomS9s0iASoHmAACWxLdj0EE789.png

生成的涡旋光光斑如下图所示。

wKgZomS9s0iADOTKAAArZ88RPDk125.jpg

影响涡旋光光斑质量的因素

1)SLM精度。影响涡旋光光斑质量的因素,主要是由SLM的调制精度所决定的。因此,对于涡旋光相关的应用,与精度相关的参数,如线性度、衍射效率、表面平整度等,就是在选择SLM时需要关注的几个关键参数。

滨松SLM的主要优势之一就是它的精度非常高,能保证涡旋光的调制精度和光斑的质量,例如l=1的涡旋光光斑,用不同品牌不同精度的SLM调制出来的效果如下图,可以看出精度差的SLM会导致光斑奇点不圆。

wKgaomS9s0iAUVjLAAD1BVkq-fg273.png

其中线性度还影响SLM使用的方便性,线性度差的SLM需要用户手动进行LUT定标,需要额外的工作才能使用SLM,而滨松良好的线性度便为用户省去了这个步骤,使操作更为便捷。

2)入射光的偏振纯度。有的激光器偏振不纯,所以一般我们都建议在入射光路中加入偏振片来调节偏振方向至与液晶同向。下图是加入偏振片前后的光斑效果图。

wKgZomS9s0iANXWnAABXUpriBdQ581.jpg

wKgaomS9s0mAJhSFAABHty7yUgQ478.jpg

3)由透镜聚焦后的光斑效果比不聚焦的要好,请见如下实验。

4)入射光没有对准液晶中心。这时会发现奇点的位置是偏移的,通过调节光路,或者在LcosControl软件中调节相位图的位置偏移。

wKgZomS9s0mABSdgAABzCn2g4x0796.png




审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 相机
    +关注

    关注

    4

    文章

    1253

    浏览量

    52453
  • LCOS
    +关注

    关注

    1

    文章

    58

    浏览量

    58091
  • 光调制器
    +关注

    关注

    0

    文章

    76

    浏览量

    8262
  • SLM
    SLM
    +关注

    关注

    0

    文章

    64

    浏览量

    6718
收藏 人收藏

    评论

    相关推荐

    基于空间调制器彩色全息显示--上海瞬渺光电技术有限公司

    是不同的,所以大多数采用三基色光源照明全息图,通过控制三基色光源的强度比和强度空间分布实现彩色全息显示。德国Holoeye空间调制器的彩色全息显示
    发表于 02-28 13:12

    探索极限的光学魔法:滨松LCOS-SLM在超快激光加工的前沿突破

      滨松液晶-硅基空间调制器(LCOS-SLM)在超快激光加工领域日益彰显其引领地位,其独特的三维多点整形功能为激光切割带来了突破性的“长焦深”贝塞尔光,为加工过程带来新的可能性。本文为您带来
    的头像 发表于 02-18 08:59 243次阅读
    探索极限的光学魔法:滨松<b class='flag-5'>LCOS-SLM</b>在超快激光加工的前沿突破

    空间调制器的原理 空间调制器的作用

    空间调制器的原理 空间调制器的作用  空间调制器是一种利用光的干涉、衍射等现象对光进行
    的头像 发表于 12-20 13:45 1011次阅读

    调制的基础光路搭建及实例

    空间调制器来实现。并且,由于其可编程性,空间调制器还可以实现传统光学元件所实现困难/成本高/实现不了的相位调制功能,例如
    的头像 发表于 12-01 10:24 263次阅读
    光<b class='flag-5'>调制</b>的基础光路搭建及实例

    SLM生成高阶涡旋

    for high-security encryption”的文章。在该文章中,滨松LCOS-SLM(型号X13138-01)作为生成高阶涡旋光的相位调制器件,助力客户生成了高阶轨道角动量涡旋
    的头像 发表于 08-03 06:51 314次阅读
    <b class='flag-5'>SLM</b>生成高阶<b class='flag-5'>涡旋</b>光

    空间调制器LCOS-SLM的使用

        SLM(Spatial Light Modulator,空间调制器)是可以调节光波前的振幅或相位的光学器件。 基于LCOS(Liquid Crystal On Silicon
    的头像 发表于 07-18 06:44 650次阅读
    <b class='flag-5'>空间</b>光<b class='flag-5'>调制器</b><b class='flag-5'>LCOS-SLM</b>的使用

    空间调制器LCOS-SLM消光比的测试方法

      消光比虽然不是滨松出厂的标准测试参数,但是通过消光比我们可以间接的得到SLM相位性能水平(相位调制准确度,SLM表面平整度)如何,此外由于消光比测试的光路比较简单,也方便客户长时间观察SL
    的头像 发表于 06-29 06:46 431次阅读
    <b class='flag-5'>空间</b>光<b class='flag-5'>调制器</b><b class='flag-5'>LCOS-SLM</b>消光比的测试方法

    超级激光加工应用实例:滨松空间调制器LCOS-SLM高光强阈值性能体现

      液晶-硅基空间调制器(LCOS-SLM)一直以来以高精度和易操控性,被用于各种光斑整型、光场调控的应用中。比如通过在0-2π范围内改变光的相位,产生三维多焦点、贝塞尔光、艾里光、HG模光、LG
    的头像 发表于 06-27 06:53 699次阅读
    超级激光加工应用实例:滨松<b class='flag-5'>空间</b>光<b class='flag-5'>调制器</b><b class='flag-5'>LCOS-SLM</b>高光强阈值性能体现

    空间调制器LCOS-SLM刷新频率计算方法

      1、空间调制器的驱动类型   滨松空间调制器有标准品(Standard type,下图左)和板级(OEM type,下图右)两种产品,他们的主要区别是OEM type在操作上具
    的头像 发表于 06-25 06:55 399次阅读
    <b class='flag-5'>空间</b>光<b class='flag-5'>调制器</b><b class='flag-5'>LCOS-SLM</b>刷新频率计算方法

    基于空间调制器LCOS-SLM的激光加工应用

    镜可以使光强的损失降到最低。 3. 调制精度。主要影响LCOS的表面平整度,见下图: 50×50点阵图: 审核编辑 黄宇
    的头像 发表于 06-14 06:54 411次阅读
    基于<b class='flag-5'>空间</b>光<b class='flag-5'>调制器</b><b class='flag-5'>LCOS-SLM</b>的激光加工应用

    空间调制器LCOS-SLM选型及参数解析

    空间调制器是采用LCOS(Liquid Crystal On Silicon, 硅基液晶)芯片来调节光波前的振幅或相位的光学器件。LCOS芯片是由液晶像元组成的像素阵列,每个像素都能
    的头像 发表于 06-08 06:51 766次阅读
    <b class='flag-5'>空间</b>光<b class='flag-5'>调制器</b><b class='flag-5'>LCOS-SLM</b>选型及参数解析

    空间调制器LCOS-SLM科研相机在光镊研究中的应用

    1986年"光镊之父" Arthur Ashkin发明了光镊,他的工作核心是利用光学梯度力进行光学捕获和操控小型介质粒子。并且他将光学捕获技术发展到了捕获并操控活体材料——例如细菌、病毒和细胞。将材料"夹"在一定的位置的激光技术被称为"光镊"。通过这项研究,Ashkin 探索了细胞的内部,操控细胞的内部结构,并且奠定了发现更好地了解人体健康、疾病状态方法的基础。可以冷却并捕获原子的技术引领了基础科学里程碑式的进步,例如原子蒸气中玻色爱因斯坦
    的头像 发表于 06-07 06:58 198次阅读
    <b class='flag-5'>空间</b>光<b class='flag-5'>调制器</b><b class='flag-5'>LCOS-SLM</b>及<b class='flag-5'>科研</b><b class='flag-5'>相机</b>在光镊研究中的应用

    液晶空间调制器的原理和应用

    空间调制器(简称SLM)基于硅基液晶(LCoS)技术。Thorlabs EXULUS®空间调制器
    的头像 发表于 05-29 14:48 4648次阅读
    液晶<b class='flag-5'>空间</b>光<b class='flag-5'>调制器</b>的原理和应用

    空间调制器LCOS-SLM的衍射效率

    一级衍射效率是LCOS真正的“衍射效率”,是通过加载闪耀光栅时(将LCOS作为光栅使用)一级衍射光的能量占不加光栅时的零级光能量的百分比来定义的。
    的头像 发表于 05-18 07:02 573次阅读
    <b class='flag-5'>空间</b>光<b class='flag-5'>调制器</b><b class='flag-5'>LCOS-SLM</b>的衍射效率

    滨松空间调制器LCOS-SLM高光强阈值性能体现

    液晶-硅基空间调制器LCOS-SLM)一直以来以高精度和易操控性,被用于各种光斑整型、光场调控的应用中。比如通过在0-2π范围内改变光的相位,产生三维多焦点、贝塞尔光、艾里光、HG模光、LG
    的头像 发表于 05-12 07:14 420次阅读
    滨松<b class='flag-5'>空间</b>光<b class='flag-5'>调制器</b><b class='flag-5'>LCOS-SLM</b>高光强阈值性能体现