0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

麻省理工开发出一种新的量子光源

led13535084363 来源:光行天下 2023-06-25 17:16 次阅读

麻省理工学院的研究人员利用被广泛研究的新型太阳能光伏材料,证明了这些材料的纳米颗粒可以发射出一束相同的单光子。

研究人员说,虽然这项工作目前是对这些材料能力的根本性发现,但它最终可能为新的光学量子计算机以及用于通信的量子隐形传态设备铺平道路。研究结果发表在6月22日的《自然·光子学》杂志上,论文作者是麻省理工学院的研究生亚历山大·卡普兰(Alexander Kaplan)、化学教授蒙吉·巴文迪(Moungi Bawendi)和其他六人。 量子计算的大多数概念使用超冷原子或单个电子的自旋作为量子比特,或量子位,构成此类设备的基础。但大约二十年前,一些研究人员提出了使用光而不是物理物体作为基本量子比特单位的想法。除其他优点外,这将消除对复杂而昂贵的设备的需求,以控制量子位,并从中输入和提取数据。取而代之的是,普通的镜子和光学探测器就足够了。

845dc1da-11df-11ee-962d-dac502259ad0.jpg

显微成像显示了钙钛矿纳米晶体的尺寸均匀性 卡普兰解释说:“有了这些类似量子比特的光子,只要你有适当准备的光子,你就可以用‘家庭’线性光学来建造量子计算机。” 这些光子的制备是关键。每个光子都必须与前一个光子的量子特性精确匹配,依此类推。一旦实现了完美的匹配,真正大的范式转变是从需要非常花哨的光学器件,非常花哨的设备,转变为只需要简单的设备。需要特别的是光本身。 然后,Bawendi解释说,他们获取这些相同且彼此无法区分的单个光子,并将它们相互作用。这种不可区分性至关重要:如果你有两个光子,并且关于它们的一切都是一样的,你不能说第一和第二,你不能那样跟踪它们。这就是允许他们以某些非经典的方式进行互动的原因。 卡普兰说:“如果我们希望光子具有这种非常特殊的属性,在能量、偏振、空间模式、时间以及所有我们可以用量子力学编码的东西中定义得非常明确,我们还需要源在量子力学上定义得非常明确。” 他们最终使用的来源是一种铅盐石钙钛矿纳米颗粒。卤化铅钙钛矿薄膜正被广泛追捧为潜在的下一代光伏器件,因为它们可能比当今的标准硅基光伏器件更轻、更易于加工。在纳米颗粒形式中,卤化铅钙钛矿以其令人眼花缭乱的低温辐射速率而著称,这使它们与其他胶体半导体纳米颗粒区分开来。光发射得越快,输出就越有可能具有明确定义的波函数。因此,快速辐射速率独特地定位卤化铅钙钛矿纳米颗粒以发射量子光。 为了测试它们产生的光子是否确实具有这种无法区分的性质,标准测试是检测两个光子之间的一种特定类型的干涉,称为洪欧曼德尔干涉。卡普兰说:“这种现象是许多基于量子的技术的核心,因此证明它的存在一直是确认光子源可用于这些目的的标志”。 他说:“很少有材料可以发出符合这一测试的光。他们几乎可以一方面列出。虽然他们的新源还不完善,只产生大约一半的时间,但其他源在实现可扩展性方面存在重大问题。”

卡普兰说:“其他来源是连贯的原因是它们是用最纯净的材料制成的,它们是一个接一个,一个原子一个原子地单独制造的。因此,可扩展性非常差,可重复性非常差。”

相比之下,钙钛矿纳米颗粒是在溶液中制成的,并简单地沉积在基板上。卡普兰说:“我们基本上只是将它们旋转到表面上,在这种情况下只是一个普通的玻璃表面。我们看到他们经历了这种行为,这种行为以前只有在最严格的准备条件下才能看到。” 因此,即使这些材料可能还不完美,卡普兰说:“它们非常可扩展,我们可以制造很多。而且它们目前非常未优化。我们可以将它们集成到设备中,我们可以进一步改进它们。” 他说:“在现阶段,这项工作是一个非常有趣的基本发现,展示了这些材料的能力。这项工作的重要性在于,希望它可以鼓励人们研究如何在各种设备架构中进一步增强这些。” 而且,Bawendi补充说:“通过将这些发射器集成到称为光学腔的反射系统中,就像其他来源所做的那样,我们完全有信心将它们集成到光学腔中将使它们的特性达到竞争水平。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 发射器
    +关注

    关注

    6

    文章

    783

    浏览量

    52306
  • 光源
    +关注

    关注

    3

    文章

    619

    浏览量

    67440
  • 量子计算
    +关注

    关注

    4

    文章

    957

    浏览量

    34332

原文标题:麻省理工开发出一种新的量子光源

文章出处:【微信号:光行天下,微信公众号:光行天下】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    全球首款氮化镓量子光源芯片诞生

    量子光源芯片作为量子互联网的“心脏”,在量子通信中扮演着至关重要的角色。而电子科技大学团队此次研发的氮化镓量子
    的头像 发表于 04-19 16:18 672次阅读

    麻省理工与Adobe新技术DMD提升图像生成速度

    2023年3月27日,据传,新型文生图算法虽然使得图像生成无比逼真,但奈何运行速度较慢。近期,美国麻省理工学院联合Adobe推出新型DMD方法,仅略微牺牲图像质量就大幅度提高图像生成效率。
    的头像 发表于 03-27 14:17 137次阅读

    量子

    当我们谈论量子计算机时,通常是在讨论一种利用量子力学原理进行计算的全新计算机系统。与传统的计算机使用二进制位(0和1)来表示数据不同,量子计算机使用
    发表于 03-13 18:18

    量子计算机重构未来 | 阅读体验】+ 了解量子叠加原理

    )。通过逻辑门来执行操作二进制数据,逻辑门是一种基本电路,它可以将个或多个输入转换为输出。逻辑门包括与门、或门、非门等等,将许许多多逻辑门组合起来就可以构建复杂的电路来执行各种操作,电子计算机
    发表于 03-13 17:19

    麻省理工学院开发出新的RFID标签防篡改技术

    虽然RFID标签广泛应用于各种场景,但安全性一直是其难以回避的问题。不法分子可以轻松复制或剥离这些电子标签,将赝品伪装成正品,欺骗消费者和认证系统。然而,麻省理工的新发明为这一问题提供了有效
    的头像 发表于 02-22 11:30 255次阅读
    <b class='flag-5'>麻省理工</b>学院<b class='flag-5'>开发出</b>新的RFID标签防篡改技术

    刚刚,6位传感器青年科学家入选!麻省理工这份权威名单公布!

    今日(11月2日),2023年度《麻省理工科技评论》“35岁以下科技创新35人”亚太区入选者名单正式公布。  《麻省理工科技评论》(MIT Technology Review)于1899年在美国
    的头像 发表于 11-03 08:41 242次阅读
    刚刚,6位传感器青年科学家入选!<b class='flag-5'>麻省理工</b>这份权威名单公布!

    “发现和合成量子点”斩获诺奖 晶能光电积极融入显示产业变革

    近日,因“发现和合成量子点”,来自美国麻省理工学院的蒙吉·巴文迪、美国哥伦比亚大学的路易斯·布鲁斯和俄罗斯物理学家阿列克谢·伊基莫夫被授予2023年诺贝尔化学奖。
    的头像 发表于 10-09 15:41 715次阅读
    “发现和合成<b class='flag-5'>量子</b>点”斩获诺奖 晶能光电积极融入显示产业变革

    麻省理工学院研究团队开发一种新型医学成像设备

    据麦姆斯咨询介绍,麻省理工学院(MIT)林肯实验室和马萨诸塞州总医院超声研究与转化中心的研究团队合作开发一种新型医学成像设备,被称为非接触式激光超声(NCLUS)系统。这种基于激光的超声成像系统
    的头像 发表于 09-22 09:15 1865次阅读
    <b class='flag-5'>麻省理工</b>学院研究团队<b class='flag-5'>开发</b><b class='flag-5'>一种</b>新型医学成像设备

    麻省理工学院提出可以实现远程低功耗的水下通信

    水下传感器网络对于监测渔场、飓风预报和探测敌方潜艇等各种应用来说都是非常宝贵的。然而,通过液体传输数据比通过空气传输要困难得多。麻省理工学院的工程师们提出了一种解决方案,可以实现远程低功耗的水下通信
    的头像 发表于 09-20 10:23 836次阅读

    研究人员开发出一种创新的光电化学(PEC)蚀刻技术

    近日,美国哈佛医学院(HMS)和麻省理工学院总医院的一个联合研究小组表示,他们利用PEC刻蚀法实现了微盘激光器输出的调谐,这使得纳米光子学和生物医学的新来源“很有希望”。 在纳米光子学和生物医学
    的头像 发表于 09-12 10:36 706次阅读
    研究人员<b class='flag-5'>开发出</b><b class='flag-5'>一种</b>创新的光电化学(PEC)蚀刻技术

    麻省理工开发出一种新的量子光源

    麻省理工学院的研究人员利用被广泛研究的新型太阳能光伏材料,证明了这些材料的纳米颗粒可以发射出一束相同的单光子。研究人员说,虽然这项工作目前是对这些材料能力的根本性发现,但它最终可能为新的光学量子
    的头像 发表于 08-08 06:51 392次阅读
    <b class='flag-5'>麻省理工</b><b class='flag-5'>开发出</b><b class='flag-5'>一种</b>新的<b class='flag-5'>量子</b><b class='flag-5'>光源</b>

    麻省理工学院开创以更高的速率生成概率比特(p比特)的新方法

    当今计算机的明确0和1可能会阻碍对混乱的现实世界问题的准确答案。一个新兴的研究领域开创了一种称为概率计算的计算方法。现在,麻省理工学院的一组研究人员开创了一种以更高的速率生成概率比特(p比特
    的头像 发表于 08-01 11:40 681次阅读

    麻省理工学院的工程师在计算机芯片上“生长”原子级的薄晶体管

    晶体管以创建更密集的集成是非常困难的。 然而,由超薄2D材料制成的半导体晶体管,每个只有大约三个原子的厚度,可以堆叠起来制造更强大的芯片。为此,麻省理工学院的研究人员现在已经展示了一种新技术,该技术可以有效且高效地直
    的头像 发表于 07-03 15:18 350次阅读

    麻省理工华裔研究出2D晶体管,轻松突破1nm工艺!

    然而,前不久麻省理工学院(MIT)华裔研究生朱家迪突破了常温条件下由二维(2D)材料制造成功的原子晶体管,每个晶体管只有 3 个原子的厚度,堆叠起来制成的芯片工艺将轻松突破 1nm。
    的头像 发表于 05-31 15:45 1190次阅读
    <b class='flag-5'>麻省理工</b>华裔研究出2D晶体管,轻松突破1nm工艺!

    麻省理工华裔:2D 晶体管,轻松突破 1nm !

    然而,前不久麻省理工学院(MIT)华裔研究生朱家迪突破了常温条件下由二维(2D)材料制造成功的原子晶体管,每个晶体管只有 3 个原子的厚度,堆叠起来制成的芯片工艺将轻松突破 1nm。
    的头像 发表于 05-30 14:24 1350次阅读
    <b class='flag-5'>麻省理工</b>华裔:2D 晶体管,轻松突破 1nm !