0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电源稳定性分析-Moku:Lab频率响应分析仪应用指南

上海昊量光电设备有限公司 2022-03-17 09:32 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

电源稳定性分析

Moku:Lab频率响应分析仪应用指南

在这份应用指南中,我们使用Moku:Lab频率响应分析仪来测量线性电压调节器在不同频率激发下的增益与相位。我们将使用一个注入变压器把微小信号注入一个反馈回路,观察两个不同负载电容的相位裕度

频率响应分析仪

Moku:Lab的频率响应分析仪(FRA)通过输出正弦扫频信号对被测设备进行激发,同时使用混频法来测量反馈信号的增益与相位,从而得到设备的传递函数。在这个应用指南中,我们会把一个周正弦扫频信号通过注入变压器注入到一个线性电压调节器的反馈回路中,并得到这个系统的相位裕度。

线性电压调节器通常使用一个反馈回路来保持电压的额稳定性。我们需要人为注入一个干扰信号,从而测量控制回路的响应。通常情况下,我们通过在其反馈回路中加入一个极小的电阻来实现信号注入与测量。这个电阻也被叫做注入电阻(Rinj)。

同大多数的测量设备一样,Moku:Lab带有接地的输入输出端。但Rinj通常并不接地,因此,我们需要使用注入变压器来隔离两个电路。这个应用指南中,我们使用了来自Picotest的J2101A型注入变压器。


试验仪器设置

在这个试验中,我们使用Picotest VRTS 1.5版本的测试电路板进行测试。图+一为该电路电路图。这个电路使用一个分流调节器(U1)来控制一个双极型晶体管(Q1),将7-10伏左右的电压转换到3.3 伏,到R3与R4上。此测试电路提供了多个监测点,以及一个4.99欧姆的注入电阻R2。测试点TP3与TP4则用来连接注入变压器以及测量探头。

开关S1可将切换使用不同的两个100微法的输出电容。其中,C2为铝电解电容,C3为钽质电容器LED指示灯则是用来显示该电路是否已导通及正常工作。

244d0124-a558-11ec-8b86-dac502259ad0.png

图1: VRTS 1.5设计图


2484f61a-a558-11ec-8b86-dac502259ad0.png

图2:实验设置

2502e9ee-a558-11ec-8b86-dac502259ad0.png

图3:VRTS 1.5近距离放大图

图二中展示了Moku:Lab,Picotest注入变压器以及VRTS 1.5测试电路。图三中近距离展现了VRTS 1.5以及电源,探头的连接方法。我们使用Moku:Lab的输入1的探头连接至监测点TP4,输入2的探头连接至探测点TP3。输出1用来产生驱动所用的扫频正弦波,输入给注入变压器中,并加载到Rinj上。输出2并未使用。为测量被测设备的传递函数,我们将输入1与输入2分别连接到注入电阻的两端。然后,我们通过Moku:Lab的灵活便捷的iPad用户界面,即可快速设置数学通道,测量输入2/输入1的频率响应,从而得到被测仪器的传递函数。


起始结果

首先,将输出频率范围调节至100赫兹至10兆赫兹,输出振幅-15dBm。在测试中,我们首先使用钽质电容器。图4展示了首次扫频所得出的结果。

25816ad0-a558-11ec-8b86-dac502259ad0.png

图4:起始结果

数学通道(橙色)展示了系统的Bode图。

输入1 (红色)和输入 2(蓝色)也分别展示在图中。

iPad用户界面提供了方便实用的光标功能。图中较为明显的三个峰分别被光标标注。

图中可以看到较为明显的噪声。


实验优化

我们通过提高提平均测量时间(至少200毫秒或100周期),并些许提高整定时间(至少20毫秒或20周期)的方法提高信噪比。新得到的Bode图中,信噪比明显提高。

25cec186-a558-11ec-8b86-dac502259ad0.png    

图5:噪声明显减少,有些许过载现象

调整平均测量时间与整定时间后,噪声明显减少。

在0分贝增益点处,有些许非线性现象。可能是由于过高驱动电压所导致。

在100-300千赫区间有较为明显的相位噪声。

或可以通过减少驱动电压来提升测量质量。

2619521e-a558-11ec-8b86-dac502259ad0.png   

图6:钽质电容最终Bode图

我们将驱动电压改为-30dBm,并将输入改为交流耦合,1伏峰-峰输入范围。

0dBm点已经趋于线性,大约在6.39千赫兹。所得36.9°左右相位裕度。


最后,我们切换开关并检测铝电解电容的响应。图7展示了该电容的Bode图。

2650cdca-a558-11ec-8b86-dac502259ad0.png   

图7:铝电解电容最终Bode图

0dBm在点大约在8.461千赫兹,相位裕度增长到了75.295°。

总结

在这个应用指南中,我们演示了如何使用Moku:Lab频率响应分析仪以及注入变压器来测量线性电压调节器的频率响应。通过改变,优化分析仪的输出电压,平均时间,我们得到了高信噪比的Bode图。


通过Bode图,我们可以看到两种不同电容的相位裕度。Moku:Lab拥有快捷方便的用户操作界面,用户可轻松将采集完数据或屏幕截图直接上传到云端或者通过邮件等方式发送,或将采集到的数据直接上传到电脑上进行分析。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电源
    +关注

    关注

    185

    文章

    18709

    浏览量

    261358
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    eVTOL舱内噪声响应分析的仿真流程

    上一节中介绍了eVTOL旋翼噪声的表征以及通过声学BEM模型分析旋翼噪声到eVTOL机体外表面的噪声传播分析流程,本节将在上节内容的基础上继续介绍eVTOL舱内噪声响应分析的仿真流程,同时根据贡献
    的头像 发表于 09-23 14:06 420次阅读
    eVTOL舱内噪声<b class='flag-5'>响应分析</b>的仿真流程

    热失重分析仪:材料热稳定性的 “解码者”

    热失重分析仪(TGA)是材料科学领域中用于研究物质热稳定性与成分变化的精密仪器,它通过精准控制温度变化,追踪样品质量随温度或时间的动态变化,为材料特性分析提供关键数据。​上海和晟HS-TGA-101
    的头像 发表于 08-14 10:18 487次阅读
    热失重<b class='flag-5'>分析仪</b>:材料热<b class='flag-5'>稳定性</b>的 “解码者”

    是德频谱分析仪对微波信号频率稳定性的测量与分析

    微波信号频率稳定性在现代通信、雷达、电子对抗等领域至关重要。是德频谱分析仪作为高精度的测量设备,能够对微波信号的频率稳定性进行准确测量与深入
    的头像 发表于 06-13 13:54 504次阅读
    是德频谱<b class='flag-5'>分析仪</b>对微波信号<b class='flag-5'>频率</b><b class='flag-5'>稳定性</b>的测量与<b class='flag-5'>分析</b>

    如何维护微波网络分析仪以确保测量精度和稳定性

    维护微波网络分析仪以确保测量精度和稳定性,需从环境控制、日常操作、定期校准、硬件维护和软件管理五个维度系统化实施。以下是具体措施及实施要点:一、环境控制:基础保障 温湿度管理 温度:保持20-25
    发表于 04-23 14:53

    电压跟随器的稳定性分析

    电压跟随器的稳定性是其重要性能指标之一,以下是对电压跟随器稳定性分析: 一、稳定性概述 电压跟随器的稳定性主要指其在各种工作条件下,输出电
    的头像 发表于 02-17 18:17 1547次阅读

    Venable发布9X50系列电机控制频率响应分析仪

    Venable公司近期推出的9X50系列电机控制应用频率响应分析仪,在原有FRA产品的基础上实现了技术上的进一步飞跃。该系列分析仪深度融合了前沿的模拟与数字技术,并引入了先进的DSP(数字信号处理
    的头像 发表于 01-24 13:35 1159次阅读

    如何使用Moku进行阻抗测量?

    在本文中,我们介绍了通过使用Moku设备的频率响应分析仪进行精确阻抗测量的示例,本文中主要从原理上出发,通过不同方法进行了电阻与电感元件的测量。
    的头像 发表于 01-23 10:55 876次阅读
    如何使用<b class='flag-5'>Moku</b>进行阻抗测量?

    混合信号分析仪的原理和应用场景

    信号分析仪可以帮助工程师分析数字信号的时序波形,了解通信协议的传输特性和错误情况,从而优化和调试通信系统的性能。 电源电子学应用:高精度的波形分析对于确保
    发表于 01-21 16:45

    函数信号分析仪的原理和应用场景

    制造:在电子制造过程中,函数信号分析仪可以用于测试电路板、集成电路等电子元件的性能和质量。通过测量信号的频率响应、相位响应等参数,可以评估电子元件的可靠性和稳定性。 声学领域:在声学领
    发表于 01-20 14:13

    电能质量分析仪如何提高电力系统稳定性

    。 电能质量分析仪的基本原理 电能质量分析仪通过实时监测电力系统中的电压、电流、频率、功率因数和谐波等参数,来评估电能质量。这些参数的异常变化可能是电力系统不稳定的前兆。电能质量
    的头像 发表于 01-08 10:04 879次阅读

    电源滤波器的频率响应稳定性如何保证?

    电源滤波器清除电源无用频率,保障后端设备电能稳定频率响应稳定性至关重要,受元件性能、拓扑结构、
    的头像 发表于 12-19 15:01 907次阅读
    <b class='flag-5'>电源</b>滤波器的<b class='flag-5'>频率响应</b><b class='flag-5'>稳定性</b>如何保证?

    运算放大器电路的稳定性分析

    运算放大器电路的稳定性分析是电子工程领域中的一项重要任务,它关系到电路能否在受到扰动后迅速恢复到稳定状态,以及输出信号是否准确、无失真。 一、稳定性的定义与重要性 在控制系统和电路设计中,稳定
    的头像 发表于 12-18 15:55 2559次阅读

    热重分析仪如何测材料的热稳定性和成分

    热重分析仪是一款检测材料热稳定性和成分的仪器,应用领域广泛,主要在材料科学、化工、医药生物、食品和能源等行业。一、热重分析仪的工作原理热重分析仪主要通过测量材料在加热或冷却过程中质量的
    的头像 发表于 12-16 13:53 909次阅读
    热重<b class='flag-5'>分析仪</b>如何测材料的热<b class='flag-5'>稳定性</b>和成分

    电源滤波器的频率响应稳定性如何测试?

    电源滤波器的性能并非一成不变,特别是在不同频率下,其滤波效果会有所差异。因此,对电源滤波器的频率响应稳定性进行测试显得尤为重要。
    的头像 发表于 12-13 17:43 860次阅读
    <b class='flag-5'>电源</b>滤波器的<b class='flag-5'>频率响应</b><b class='flag-5'>稳定性</b>如何测试?

    相位噪声分析仪的技术原理和应用

    输入信号的相位噪声与频率稳定性来评估振荡器的性能。具体来说,其技术原理包括以下几个步骤: 时钟提取:相位噪声分析仪需要从输入信号中提取时钟信号。这通常通过锁相环(PLL)或倍频器等电路来实现,以提取
    发表于 12-13 14:21