0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电路保护与能量存储

上海雷卯电子 2021-12-31 15:59 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

电路保护与能量存储

一般而言,电路保护通常涉及确保过多的能源不会损坏或阻碍电路的运行。但是,随着低能耗解决方案变得越来越流行,是否可以将这种额外的能源重新用于其他用途?

低能耗解决方案

随着技术影响力的不断提高以及电子产品成本的下降,不足为奇的是,到本十年末,我们可以很好地看到某个电路正在处理生活的方方面面。物联网(IoT)的兴起见证了无数的感官数据的收集,而晶体管尺寸的减小则见证了在硅片上制造的功率惊人的处理器,其大小不超过一粒米。

确实,这种技术的丰富性使设计人员希望突破电子设备可操作的范围,这导致电子设备在恶劣的偏远环境(如海洋,沙漠和太空)中得以实现。在此类环境中进行设计时,设计人员必须了解,电路不仅必须能够在这些环境中运行(例如化学损伤,热和辐射),而且还需要电源

电源的变化很大,每种电源都有其自身的优点和缺点,包括可靠性,存储能力和实用性。通过使用睡眠周期减少功耗,可以最大程度地减少对电源的依赖,但是即使如此,仍然需要电源。

一种看似有希望的技术是能量收集。该解决方案使电路吸收周围环境中的能量,存储该能量,然后将其转换为更有用的格式。这些来源包括太阳,风和振动。但是,这里是否有一种替代能源实际上被忽视了?

电路保护目的

如前所述,电路保护的基本目的是将有害能源从容易损坏的敏感电路中转移出去。这种转移可通过多种技术来实现,包括防止电压超过电路阈值的钳位二极管或防止大量电流流过电路的PTC可复位保险丝

大多数现代电路保护技术都涉及转移或消散多余的能量,无论它来自静态来源(例如人)还是来自意外的电涌(例如来自配电网络的电涌)。如果电路保护的目的是防止有害能量损坏组件,那么该能量是否可以存储而不是消散?如何在设计中实现这一点?这样的系统将使哪些应用受益?

能量收集和电路保护

典型的能量收集技术涉及直接连接到其能量源的能量存储元件(例如电容器),并且它们之间的电路最少。例如,太阳能电池可以连接至电容器,该电容器又连接至DC/ DC转换器。当电容器两端的电压达到特定阈值时,DC/ DC转换器可以使电压升高,然后为主电路供电。从简单的信标到物联网传感器,一切都可以。

但是,从有害来源转换能量可能会出现问题,因为必须从能源路径转移能量来源,而不是从专用的电力路径转移能量。为了更好地理解这个设计问题,让我们看一下两种不同的情况;ESD源和电感性元件。

ESD源

静电放电源通常是很短时间内的高压。日常ESD来源的常见示例包括层压地板上的购物车和摩擦皮肤的衣服。在这两个示例中,产生的电压可能高达10KV,它们可能导致人跳下来。

由于静电冲击的长度通常在毫秒范围内,因此传递的总能量非常小,这就是为什么这些源对人体无害的原因。而且,许多电路现在都基于CMOS技术,其中包括难以置信的薄栅极。这些栅极极易受到电介质击穿的影响,这就是为什么静电冲击很容易损坏它们的原因(因此需要防静电包装等)。保护免受此类干扰的方法通常包括使用齐纳二极管,其钳位电压超过规定范围(例如5V逻辑电路为5.1V)。

从ESD源转移能量将很困难,因为电路必须能够以最小的功率快速做出响应。因此,这种方法将需要依赖于模拟电路(即,没有有源微控制器或数字逻辑),其中一种可能的布置是使用雷卯电子晶闸管TSS。高于所需电平(例如5.1V)的电压可能会导致二极管配置将主电路与ESD电源电隔离,然后电连接功率存储元件(例如超级电容器)。可以实现此目的的组件将是基于PN结的组件,例如二极管,SCR和晶闸管。

电路设计中的挑战将是确保电路在将能量转移到存储元件的同时,将其与ESD源电隔离,而不是通过二极管将其散发为热量。这种用于能量收集的方法在可穿戴应用中将非常有益,因为运动会产生振动,而机械能也会产生静电。ESD能量存储在很少使用的远程环境(例如监控站)中不可行。

感应源

由于电路反电势的存在,在电路保护方面,电感元件对于电路设计人员而言可能是个大问题。电感器实质上是电磁体的一种形式,其中当电流流过时,会产生磁场。如果通过电感器的电流保持恒定,则产生的磁场也将恒定。另一方面,如果电流变化,则磁场的合成强度也会变化。如果您愿意,这种变化的磁场会在电感器中感应出一个电压,该电压的极性与变化的电流相反。这种抗变化能力在滤波器电路中很有用,从而可以阻止电流的突然变化(例如电涌),从而防止损坏路径上的电路。不过,值得注意的是电感可能是电路损坏的潜在来源,尤其是在涉及开关电路的情况下。继电器线圈是一个常见的例子,其中反电动势会损坏电路,否则可通过反极性二极管对其进行保护。由于唯一的电压源是电源,因此打开继电器线圈不会导致电压尖峰(当观察到电流尖峰时)。当继电器线圈断电时,坍塌的磁场会产生非常大的反电动势,通常以数百伏为单位进行测量。通过使用反激二极管解决了这个问题,该反激二极管实质上使继电器线圈短路,并防止大的反电动势进入敏感的开关电路,例如晶体管。继电器线圈是一个常见的例子,其中反电动势会损坏电路,否则可通过反极性二极管对其进行保护。由于唯一的电压源是电源,因此打开继电器线圈不会导致电压尖峰(当观察到电流尖峰时)。当继电器线圈断电时,坍塌的磁场会产生非常大的反电动势,通常以数百伏为单位进行测量。通过使用反激二极管解决了这个问题,该反激二极管实质上使继电器线圈短路,并防止大的反电动势进入敏感的开关电路,例如晶体管。继电器线圈是一个常见的例子,其中反电动势会损坏电路,否则可通过反极性二极管对其进行保护。由于唯一的电压源是电源,因此打开继电器线圈不会导致电压尖峰(当观察到电流尖峰时)。当继电器线圈断电时,坍塌的磁场会产生非常大的反电动势,通常以数百伏为单位进行测量。通过使用反激二极管解决了这个问题,该反激二极管实质上使继电器线圈短路,并防止大的反电动势进入敏感的开关电路,例如晶体管。由于唯一的电压源是电源,因此打开继电器线圈不会导致电压尖峰(当观察到电流尖峰时)。当继电器线圈断电时,坍塌的磁场会产生非常大的反电动势,通常以数百伏为单位进行测量。通过使用反激二极管解决了这个问题,该反激二极管实质上使继电器线圈短路,并防止大的反电动势进入敏感的开关电路,例如晶体管。由于唯一的电压源是电源,因此打开继电器线圈不会导致电压尖峰(当观察到电流尖峰时)。当继电器线圈断电时,坍塌的磁场会产生非常大的反电动势,通常以数百伏为单位进行测量。通过使用反激二极管解决了这个问题,该反激二极管实质上使继电器线圈短路,并防止大的反电动势进入敏感的开关电路,例如晶体管。

可以将来自电感器的反电动势存储到能量收集电路中,但这样做与存储ESD能量具有类似的挑战。短暂的能量脉冲将必须由不依赖于外部电源或处理系统的电路来处理。这可以通过齐纳二极管装置来实现,该齐纳二极管装置在被激活时将敏感控制电路与电感器电隔离。然后,电容器组将能够存储反电动势和以后重新利用的能量。这种在同时保护电路的同时进行能量收集的方法可以在诸如门锁之类的低功率家庭自动化设备中实施,这是控制螺线管所必需的,但仅短暂使用。

结论

在最长的时间内,电子产品已内置在具有某种可靠电源(无论是电池还是电源)的产品中。随着将电子设备安装到各种位置的需求以及对更节能系统的需求,能量收集已成为该行业越来越受欢迎的领域。

随着电子设备的能源需求不断减少,来自小来源(如ESD和感应电压)的可用能量也随之增加。下一代智能健康传感器是否将采用ESD供电?电池的锁是否可以使用多年?电路保护会进入能量存储吗?时间会证明一切。

雷卯电子积累了各行业应用的电路保护方案。

1c55df86-69c1-11ec-8d32-dac502259ad0.jpg

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电路
    +关注

    关注

    173

    文章

    6063

    浏览量

    177477
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    电路保护方法概述—北美市场

    电路保护是现代电气系统安全与可靠性的核心,无论是在工业环境、商业建筑,还是在住宅用电中,都需要合适的电路保护措施来避免因短路、过电流或其他电气故障引发的火灾、设备损坏和人身伤害。今天的
    的头像 发表于 08-27 10:24 620次阅读
    <b class='flag-5'>电路</b><b class='flag-5'>保护</b>方法概述—北美市场

    继电器电弧防护与电路保护设计

    继电器电弧防护与电路保护设计
    的头像 发表于 08-27 10:17 631次阅读
    继电器电弧防护与<b class='flag-5'>电路</b><b class='flag-5'>保护</b>设计

    能量采集(EH)技术:发展、误解与成本分析

    一个运作良好的 EH 系统,需要多个组件协同工作,包括 EH 换能器、能量存储系统、电源管理集成电路(PMIC)以及负载系统(如 MCU、无线电、传感器等)。在这些组件中,PMIC 可谓是最为基础且关键的部分
    的头像 发表于 08-04 16:28 993次阅读
    微<b class='flag-5'>能量</b>采集(EH)技术:发展、误解与成本分析

    存储界新风暴!顺络新型钽电容助力eSSD断电数据保护

    、可靠性、可扩展性和管理性等方面的严格要求。相较于消费级SSD,eSSD具有更高的读写速度,更低的延迟,更大的存储容量以及更高的可靠性,并且具有断电保护功能。 为实现其断电保护功能,eSSD通常会配备大容量的电容。在正常供电时,
    发表于 07-02 13:43 1299次阅读
    <b class='flag-5'>存储</b>界新风暴!顺络新型钽电容助力eSSD断电数据<b class='flag-5'>保护</b>

    可编程电源保护电路的组成和功能是什么

    可编程电源的保护电路是确保设备安全运行、防止被测设备(DUT)和电源本身损坏的核心组件。其通过实时监测输出参数(电压、电流、温度等),在异常情况下快速切断输出或调整工作状态,形成多层级防护体系。以下
    发表于 07-01 14:51

    无刷直流电机的保护电路

    摘 要:为了使无刷直流电机长期稳定运行,采用加保护电路的方法使其正常工作,保护电路主要由欠压保护,过流
    发表于 06-26 13:38

    硬件电路:24V电源输入端保护设计

    一、概述一种24V电源输入的保护设计,可以实现过流保护、过压保护、反接保护、EMC滤波。二、应用应用电路
    的头像 发表于 05-29 19:35 1059次阅读
    硬件<b class='flag-5'>电路</b>:24V电源输入端<b class='flag-5'>保护</b>设计

    KUU过压保护器件|小小器件,超大能量!敏感信号输入的&amp;quot;安全阀&amp;quot;

    电子系统的安全防线,离不开精密保护器件的构筑,而过压保护正是这一防线中的关键一环。在车载系统的运行过程中,引擎启动时产生的大浪涌电压构成了严峻挑战。这种瞬态的高能量冲击,对车载电子设备的稳定性构成
    的头像 发表于 05-22 13:34 569次阅读
    KUU过压<b class='flag-5'>保护</b>器件|小小器件,超大<b class='flag-5'>能量</b>!敏感信号输入的&amp;quot;安全阀&amp;quot;

    开关电源安全保护电路:浪涌保护、过流保护、过压保护

    , 须有多种保护措施. 对保护电路的特点分析, 对存在不足期待克服, 希望设计出更安全、更可靠的保护电路。 1、浪涌电流
    发表于 05-20 14:19

    Bourns 推出车规级多层压敏电阻系列, 具备先进瞬态能量吸收能力,提供卓越的浪涌保护

    专为汽车电路设计,全新压敏电阻采用 1210 与 1812 SMD 封装,实现更高能量分布与功率耗散效能 2025 年 5 月 13 日 - Bourns 全球知名电源、保护和传感解决方案电子组件
    发表于 05-14 14:00 1584次阅读
    Bourns 推出车规级多层压敏电阻系列, 具备先进瞬态<b class='flag-5'>能量</b>吸收能力,提供卓越的浪涌<b class='flag-5'>保护</b>

    开关电源保护电路

    摘要:为使开关电源在恶劣环境及突发故障状况下安全可靠,提出了几种实用的保护电路,并对电路的工作原理进行了详尽分析。 关键词:开关电源;保护电路
    发表于 03-10 17:11

    开关电源各部电路详解

    雷击,产生高压经电网导入电源时,由 MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若
    发表于 03-10 16:51

    半导体存储电路讲课资料

    半导体存储电路讲课资料
    发表于 02-21 17:53 1次下载

    电路保护有哪些意义

    在当今电气电子技术广泛应用的时代,电路如同各类设备的 “神经系统”,掌控着设备的运行,而电路保护则是保障这一 “神经系统” 健康稳定的关键防线,其意义深远且重大。 首先,电路
    的头像 发表于 02-04 16:23 952次阅读

    电容器深入研究:电路保护、滤波和能量存储

    校参加了一些课程,并获得了一些关于何时使用电容器以及它们如何工作的真实示例。从电路保护到滤波,从能量存储到传感,我正在深入研究简单而复杂的电容器世界。 这些东西是如何运作的? 事实上,
    的头像 发表于 01-25 15:13 926次阅读
    电容器深入研究:<b class='flag-5'>电路</b><b class='flag-5'>保护</b>、滤波和<b class='flag-5'>能量</b><b class='flag-5'>存储</b>