0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

硬件测试-噪声的测试分析(3)

冬至子 来源:硬件工程师技术小站 作者:硬件工程师技术小 2023-05-29 15:24 次阅读

本文是使用频域方法分析电源噪声的一个案例,在观察时域波形无法定位故障时,通过FFT(快速傅立叶变换)方法进行时频转换,将时域电源噪声波形转换到频域进行分析。电路调试时,从时域和频域两个角度分别来查看信号特征,可以有效地加速调试进程。

问题: 在单板调试过程中发现一个网络的电源噪声达到80mv,已经超过器件要求,为了保证器件能够稳定工作必须降低该电源噪声。

分析: 在调试该故障前先回顾下电源噪声抑制的原理。如下图所示,电源分配网络中不同的频段由不同的元件来抑制噪声,去耦元件包含电源调整模块(VRM)、去耦电容PCB电源地平面对、器件封装和芯片。 VRM包含电源芯片及外围的输出电容,大约作用于DC到低频段(100K左右),其等效模型是一个电阻和一个电感组成的二元件模型。去耦电容最好使用多个数量级容值的电容配合使用,充分覆盖中频段(几十K到100M左右)。

由于布线电感和封装电感的存在,即使大量堆砌去耦电容也难以在更高频起到作用。PCB电源地平面对形成了一个平板电容,也具有去耦作用,大约作用在数十兆。芯片封装和芯片负责高频段(100M以上),目前的高端器件一般会在封装上增加去耦电容,此时PCB上的去耦范围可以降低到数十兆甚至几兆。因此,在电流负载不变的情况下,我们只要判断出电压噪声出现在哪个频段,那么针对这个频段所对应的去耦元件进行优化即可。在两个去耦元件的相邻频段时两个去耦元件会配合作用,所以在分析去耦元件临界点时相邻频段的去耦元件也要同时纳入考虑。

图片

改进试验: 根据传统电源调试经验,首先在该网络上增加了一些去耦电容,增加电源网络的阻抗余量,保证在中频段的电源网络阻抗都能满足该应用场景的需求。结果纹波仅降低几mV,改善微乎其微。产生这个结果有几个可能:

1、噪声处在低频,并不在这些去耦电容起作用的范围内;

2、增加电容影响了VRM的环路特征,电容带来的阻抗降低与VRM的恶化抵消了。

带着这个疑问,我们考虑使用示波器的频域分析功能来查看电源噪声的频谱特性,定位问题根源。

示波器的频域分析功能是通过傅立叶变换实现的,傅立叶变换的实质是任何时域的序列都可以表示为不同频率的正弦波信号的无限叠加。我们分析这些正弦波的频率、幅值和相位信息,就是将时域信号切换到频域的分析方法。

数字示波器采样到的序列是离散序列,所以我们在分析中最常用的是快速傅立叶变换(FFT)。FFT算法是对离散傅立叶变换(DFT)算法优化而来,运算量减少了几个数量级,并且需要运算的点数越多,运算量节约越大。

示波器捕获的噪声波形进行FFT变换的关键点

示波器捕获的噪声波形进行FFT变换,有几个关键点需要注意。

1、根据耐奎斯特抽样定律,变换之后的频谱展宽(Span)对应与原始信号的采样率的1/2,如果原始信号的采样率为1GS/s,则FFT之后的频谱展宽最多是500MHz;

2、变换之后的频率分辨率(RBW Resolution Bandwidth)对应于采样时间的倒数,如果采样时间为10mS,则对应的频率分辨率为100Hz;

3、频谱泄漏,即信号频谱中各谱线之间相互干扰,能量较低的谱线容易被临近的高能量谱线的泄漏所淹没。避免频谱泄漏可以尽量采集速率与信号频率同步,延长采集信号时间及使用适当的窗函数。

电源噪声测量时不要求较高的采样率,所以可以设置很长的时基,这也意味着采集的信号时间可以足够长,可以认为覆盖到了整个有效信号的时间跨度,此时不需要添加窗函数。 调整以上设置可以得到比较准确的FFT变换曲线了,再通过Zoom功能查看感兴趣的频点。如下图中电源噪声的主要能量集中在11.3KHz左右,并以该频率为基波频率谐振。据此可以推断PDN网络在11.3KHz处的阻抗不能满足要求,电容在该频点的阻抗也比较高,起不到降低阻抗的作用,所以前面增加电容并不能减小电源噪声。

图片

一般来说,11.3KHz应该是VRM的管辖范围,此处出现较大噪声说明VRM电路设计不能满足要求。这里对VRM的性能进行分析,VRM分析的方法众多,此处主要采用仿真其反馈环路波特图的手段。波特图主要观察几个关键信息:

1、穿越频率,增益曲线穿越0dB线的频率点;

2、相位裕度,相位曲线在穿越频率处所对应的相位值;

3、增益裕度,相位在-360°时所对应的增益值。

这里我们主要关注穿越频率和相位裕度这两个指标。从VRM的环路波特图(如下图a)可以看到,VRM的穿越频率在8KHz左右,相位裕度37度。这里存在两个问题:首先VRM的相位裕度一般需要大于45度才能保证环路的稳定工作,这里相位裕度稍小一些,需要增加相位裕度;其次穿越频率太低,穿越频率附近VRM的调整作用逐渐降低,而此频点bulk电容还起不到作用,所以在8KHz附近会存在较高的阻抗,这个频点的噪声抑制作用较差。下图(b)是优化VRM环路之后的波特图,调整相位裕度到50度,穿越频率推到46KHz左右。

图片

总结: 对VRM环路进行优化,对优化后的VRM验证噪声,可以看到噪声明显降低到33mv,能够满足器件要求。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FFT
    FFT
    +关注

    关注

    15

    文章

    425

    浏览量

    58646
  • 去耦电容
    +关注

    关注

    11

    文章

    308

    浏览量

    22190
  • VRM
    VRM
    +关注

    关注

    0

    文章

    29

    浏览量

    12602
  • 电源噪声
    +关注

    关注

    3

    文章

    140

    浏览量

    17345
  • PDN
    PDN
    +关注

    关注

    0

    文章

    71

    浏览量

    22575
收藏 人收藏

    评论

    相关推荐

    如何降低测试中的噪声

    有些测试对于噪声很敏感,那么如何降低噪声?本文就选择电源以及引线连接的方式两个方面阐述如何降低测试中的噪声
    发表于 08-05 14:29 1592次阅读
    如何降低<b class='flag-5'>测试</b>中的<b class='flag-5'>噪声</b>

    基于labview的噪声测试分析

    本帖最后由 eehome 于 2013-1-5 09:46 编辑 基于labview的噪声测试分析
    发表于 05-07 16:26

    如何测试电源设计的噪声测量

    ?我不敢苟同,但我不想把话题转到理念讨论上来,还是留着在后续文章《修复错误,软硬件对比》中讨论该问题吧……我有时会发现噪声电源设计会导致系统无法通过 EMI 测试,减缓产品发布。如果能够在设计进程早期
    发表于 09-20 16:01

    电源纹波和噪声测试测量和分析

    本文介绍了采用 Keysight 硬件 10bit ADC 的高精度的 S204A 示波器和专业的电源纹波和噪声测试探头 N7020A 进行电源纹波和噪声
    发表于 10-17 11:09

    噪声测试分析

    噪声测试分析仪怎么设置VI呀
    发表于 05-13 15:20

    关于电感噪声测试

    论坛各位大神,请教个问题,关于电感 的噪声测试电感标称值6.8uH,额定电流36A,温升电流26.5A,进行噪声测试噪声超标。
    发表于 04-12 20:35

    硬件测试概述

      硬件测试概述   􀂾测试前准备   􀂾硬件测试的种类与操作   􀂾
    发表于 09-08 14:48 102次下载

    噪声测试原理图

    噪声测试、PCB原理图
    发表于 12-17 10:06 0次下载

    如何去测试“高频开关电源”噪声

    文主要是从测试的角度来分析讨论应该如何去测试“高频开关电源”噪声。这篇文章以实际测试案例说明了测量电源纹波和测量电源
    发表于 04-23 15:48 3417次阅读

    关于相位噪声测试技术的介绍和应用

    基于目前的相位噪声分析仪可以进行瞬态测试,瞬态测试主要应用于跳频信号的测试,尤其是宽带跳频信号的跳频时间
    的头像 发表于 10-14 15:07 4500次阅读
    关于相位<b class='flag-5'>噪声</b><b class='flag-5'>测试</b>技术的介绍和应用

    硬件篇之电源纹波噪声测试

    前言: 任何电子产品的运行,都少不了“电源”这个大动脉,这个大动脉的稳定,强健就是保证产品稳定,可靠,长期运行的关键。 产品电源的测试包括:电压测试,纹波噪声测试,电...
    发表于 11-07 11:51 20次下载
    【<b class='flag-5'>硬件</b>篇之电源纹波<b class='flag-5'>噪声</b><b class='flag-5'>测试</b>】

    电源测试噪声测量

    电源测试噪声测量
    发表于 11-07 08:07 5次下载
    电源<b class='flag-5'>测试</b>:<b class='flag-5'>噪声</b>测量

    硬件测试-噪声测试分析(1)

    随着超大规模集成电路的发展,芯片工作电压越来越低,而工作速度越来越快,功耗越来越大。
    的头像 发表于 05-29 15:17 1145次阅读
    <b class='flag-5'>硬件</b><b class='flag-5'>测试</b>-<b class='flag-5'>噪声</b>的<b class='flag-5'>测试</b><b class='flag-5'>分析</b>(1)

    硬件测试-噪声测试分析(2)

    大部分无源探头X1档的带宽仅1M,对于噪声来说带宽太低。X10档的带宽为10M,但是X10会放大误差,造成测量值不准确。所以不建议使用无源探头进行噪声测量。
    的头像 发表于 05-29 15:21 1216次阅读
    <b class='flag-5'>硬件</b><b class='flag-5'>测试</b>-<b class='flag-5'>噪声</b>的<b class='flag-5'>测试</b><b class='flag-5'>分析</b>(2)

    PRBTEK分享常用的电源纹波噪声测试方法

    的带宽和噪声水平会对测试结果产生影响。 2. 频谱分析仪测量法:使用频谱分析仪对电源输出信号进行频谱分析,以确定纹波
    的头像 发表于 04-15 10:24 109次阅读
    PRBTEK分享常用的电源纹波<b class='flag-5'>噪声</b><b class='flag-5'>测试</b>方法