0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

结合超低损耗光纤和高阶泵浦放大的超长距离随机光纤激光传感

QQ287392669 来源:光纤传感Focus 2023-05-19 15:20 次阅读

01导读

随机光纤激光器依靠光纤中的随机散射提供反馈,非线性效应或有源粒子提供增益,即可在无需传统光纤激光器中固定谐振腔的情况下实现激光激射,具有高亮度、频谱无模式、波长转换灵活等特点。基于随机光纤激光固有的温度不敏感特性,利用在光纤链路远端光纤布拉格光栅作用下产生的激光作为传感信号,可实现高光信噪比遥测。然而,面向架空输电线路监测及海上风电设施监测等应用场景,仍需进一步延长单端光纤无中继传感的距离。

近日,电子科技大学、东北大学、四川大学和之江实验室的合作研究团队提出一种基于高阶泵浦和超低损耗光纤及有源光纤相结合的超长距离随机光纤激光传感系统(Random fiber lasing sensor, RFLS),实现了200km超长距离FBG位移、倾角、温度及应变多参量传感。该研究成果以“Ultralong Single-Ended Random Fiber Laser and Sensor”为题发表在光学期刊Laser & Photonics Reviews韩冰博士为论文第一作者,饶云江教授和吴函副研究员为论文共同通讯作者。

02研究背景

仅利用长距离无源光纤中累积的随机分布式瑞利散射反馈及受激拉曼散射增益,在足够强的泵浦作用下即可实现频谱无模式的全开腔型随机光纤激光器(Random fiber laser, RFL)。通过在RFL光纤链路的一端加入点式反射镜构成半开腔结构或在无源光纤中加入掺铒光纤(Erbium-doped fiber, EDF),可降低随机光纤激光的激射阈值和实现随机光纤激光的级联转换。

新型光纤的出现通常会带来光纤技术及应用领域的突破。近年来,为满足光纤通信日益增长的更高传输速率、更大传输容量及更长传输距离的需求,具有大有效面积的超低损耗光纤(Ultralow loss fiber, ULLF)作为新一代通信光纤已被成功应用于光纤通信系统,不断创造传输距离的新纪录。然而,ULLF在光纤激光及传感系统中的优势仍有待探究。

另一方面,光纤布拉格光栅(Fiber Bragg grating, FBG)作为传感器件已被广泛应用于多个领域。在半开腔型RFL中,通过将FBG置于光纤链路远端,其既可以作为点式反射镜决定激光激射波长,也可作为传感元件感知外界信息,这样,在RFL泵浦端探测到的随机光纤激光就是传感信号。因此,具有长腔长、良好环境不敏感特性及高光信噪比(Optical signal-to-noise ratio, OSNR)的半开腔型RFL就为实现FBG遥感提供了一个理想平台。此前,基于单根光纤的单端随机光纤激光传感(Random fiber lasing sensing, RFLS)系统采用二阶泵浦结合标准单模光纤,已实现距离为150km的FBG传感。然而,对于这种后向泵浦半开腔型RFLS,其极限腔长决定了最长传感距离。当光纤长度过长时,光纤中累积的后向瑞利散射反馈取代链路尾端FBG作用,导致无法实现长距离遥感。因此,超长距离、高性能单端RFLS仍然是一个挑战。

本团队通过理论分析,提出了一种基于高阶泵浦结合具有低传输损耗、低瑞利散射系数、低拉曼增益系数的ULLF实现超长距离RFLS的新技术,并实验实现了200km超长距离RFL(OSNR达25dB)及多参量RFLS系统(OSNR>15dB)。

03创新研究

3.1 原理

在高阶RFL中,由泵浦源、传输光纤及泵浦端点式反射镜共同作用可激射1.46μm级联随机激光。产生的1.46μm高阶随机激光进一步作为1.5μm随机激光的直接腔内泵浦,与光纤中的后向瑞利散射及尾端的1.5μm反射镜共同构成后向泵浦结构,即可在泵浦端实现1.5μm随机激光探测。在采用ULLF的高阶RFL中,由于ULLF具有超低传输损耗及大有效面积,1.46μm级联随机激光的传输损耗更低,最大功率位置可被有效推向光纤远端,为EDF提供更高泵浦功率。如图1所示,相较于采用标准单模光纤的情况,在ULLF链路中的EDF可为1.5μm随机激光提供更高增益。此外,由于1.5μm随机激光在ULLF中传输损耗更低,其在光纤链路尾端的功率更高。因此,在高阶RFL中,沿ULLF及EDF的激光功率分布更优,可显著提高远端点式反射镜的作用效果,有效提高激光OSNR及腔长距离。

5f38db06-f614-11ed-90ce-dac502259ad0.jpg

1 结合ULLF及EDF的超长距离高阶RFL原理图

3.2 单端RFL腔长距离延长方法及验证

图2所示为基于标准单模光纤的一至六阶RFL性能对比仿真结果。我们发现,在高阶泵浦作用下,1.46μm随机激光的功率最大值位置更加深入光纤链路远端。因此,高阶RFL中产生的1.5μm随机激光的OSNR更高。对于高阶RFL受光纤的传输损耗、后向瑞利散射系数及拉曼增益系数的影响进行仿真分析(图3),采用具有更低传输损耗、更低后向瑞利散射系数及更低拉曼增益系数的光纤可有效延长后向泵浦RFL的极限腔长距离及OSNR。其中,我们首次发现光纤的超低传输损耗是提高RFL腔长距离及性能的关键因素。

5f45b056-f614-11ed-90ce-dac502259ad0.jpg

2 超长距离RFL性能对比仿真。a.1.46μm随机激光功率分布。b.1.46μm随机激光功率最大值位置。c.归一化1.5μm随机激光光谱。d.1.5μm随机激光OSNR。

5f4c532a-f614-11ed-90ce-dac502259ad0.jpg

3 采用不同参数光纤的超长距离后向泵浦六阶RFL性能对比仿真。a.采用具有不同衰减系数、瑞利后向散射系数、拉曼增益系数光纤时,六阶随机激光归一化光谱。b.采用具有不同衰减系数、瑞利后向散射系数、拉曼增益系数光纤时,六阶随机激光OSNR。c.采用具有不同衰减系数、瑞利后向散射系数、拉曼增益系数光纤时,六阶RFL极限腔长距离。

在理论分析的基础上,我们构建了基于G.654.E光纤及EDF的超长距离六阶RFL(图4a)。采用1090nm泵浦结合特殊波长波分复用器及宽带光纤环反射镜,在无需特殊波长FBG的情况下实现了前向泵浦一至五阶级联随机激光激射(图4b)。将10m长EDF置于两段100km长G.654.E光纤中间,为1.5μm随机激光提供点式增益。通过改变光纤尾端FBG中心波长,实现了1.5μm随机激光输出波长调谐,且OSNR可达25dB(图4c)。

5f55ccfc-f614-11ed-90ce-dac502259ad0.jpg

4 超长距离六阶RFL原理图及性能测试结果。a.基于G.654.E光纤及EDF的超长距离六阶RFL示意图。b.级联随机激光输出归一化光谱。c.六阶随机激光归一化波长调谐光谱。

3.3超长距离单端RFLS

由于超长距离六阶RFL中光纤尾端的FBG也可用作传感元件,因此,通过探测六阶随机激光激射波长,可实现结构简单、超长传感距离及高OSNR的无中继遥感。为验证提出的超长距离高阶RFLS系统性能,采用不同结构封装FBG测试了位移、倾角、温度及应变多参量传感性能(图5)。该工作实现了200km超长距离、>15dB高OSNR的多参量RFLS,且具有良好的线性度及复用能力。

5f5ca770-f614-11ed-90ce-dac502259ad0.jpg

5超长距离RFLS位移、倾角、温度、应变多参量传感结果。

04应用与展望

该工作提出了一种基于高阶泵浦放大结合低传输损耗、低瑞利后向散射系数及低拉曼增益系数光纤的后向泵浦RFL腔长延长方法,展示了200km超长距离、高性能随机光纤激光遥感系统,为长跨距输电线路及海上风电设施等超长距离结构安全监测提供了新的解决方案。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 激光器
    +关注

    关注

    17

    文章

    2254

    浏览量

    59073
  • EDFA
    +关注

    关注

    0

    文章

    24

    浏览量

    12056
  • 光纤激光器
    +关注

    关注

    12

    文章

    172

    浏览量

    19450
  • FBG
    FBG
    +关注

    关注

    0

    文章

    30

    浏览量

    15518

原文标题:LPR:结合超低损耗光纤和高阶泵浦放大的超长距离随机光纤激光传感

文章出处:【微信号:光纤传感Focus,微信公众号:光纤传感Focus】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    如何减少光纤弯曲损耗

    是什么? 如果我们使用OFDR设备测量光纤链路,我们将获得OFDR分布曲线(距离强度/反射率)。该曲线可以反映光纤链路中每个位置的损耗情况。损失主要以步骤的形式表现,如下图所示。用户可
    的头像 发表于 04-10 11:41 160次阅读
    如何减少<b class='flag-5'>光纤</b>弯曲<b class='flag-5'>损耗</b>

    多模光纤比单模光纤传输距离更远的原因

    随着信息科技的飞速发展,光纤通信已成为现代通信技术的核心。在光纤通信中,多模光纤与单模光纤是两种主要的传输介质。多模光纤与单模
    的头像 发表于 04-09 17:24 235次阅读

    单模光纤以及多模光纤的传输距离是多少

    (一般为9μm)的光纤,能够支持光的单模传输,即使在长距离传输时也能保持较高的传输质量。单模光纤通常用于需要长距离传输和高速传输的应用,如光通信网络和数据中心互连。 单模
    的头像 发表于 04-09 17:17 275次阅读

    光纤收发器有距离限制吗怎么设置

    及影响因素 光纤传输损耗光纤传输中会遇到光的衰减与损耗,这是光纤收发器距离限制的主要原因。随着
    的头像 发表于 04-09 16:52 230次阅读

    光纤光缆低损和标损的衰减值分别是多少呢

    /km范围内。 这个值是一个平均值,实际应用中的损耗可能会有一些波动。在一些应用中,标称损耗可能被用作性能的基准。 低损耗(Low Loss): 低损耗通常是指在标称
    的头像 发表于 03-25 10:56 242次阅读

    为什么光纤能远距离传输而不损耗

    光纤能够远距离传输信号而不损耗的原因主要有以下两个方面: 全反射特性:光纤的传输基于全反射原理。光线在光纤内的传播方式是通过反复发生全反射来
    的头像 发表于 03-11 11:52 338次阅读

    单模光纤和多模光纤能混用吗?

    随着光纤通信技术的发展,特别是激光器技术的发展以及人们对长距离、大信息量通信的迫切需求,人们又寻找到了更好的光纤通信技术----单模光纤通信
    发表于 12-07 14:30 953次阅读
    单模<b class='flag-5'>光纤</b>和多模<b class='flag-5'>光纤</b>能混用吗?

    光纤熔接时为何会产生损耗?如何有效降低光纤熔接损耗

    光纤熔接时为何会产生损耗?如何有效降低光纤熔接损耗光纤熔接是将两根光纤的端面精确对齐并加热融
    的头像 发表于 11-28 15:39 603次阅读

    单模光纤有哪几种类型 各有何特点

    单模光纤有哪几种类型 各有何特点 单模光纤是一种用于传输光信号的光导纤维,其核心直径较小,可以保证光信号的传输准直性和最小损耗。单模光纤由于具有低损
    的头像 发表于 11-28 14:43 1108次阅读

    光纤跳线的类型有哪些 光纤跳线怎么用 光纤跳线制作工艺流程

    的类型、用途以及制作工艺流程。 一、光纤跳线的类型 1. 单模跳线(Single Mode Patch Cord):单模光纤多用于长距离传输,其芯径较小,能够限制光的传播模式,从而减少信号的传播
    的头像 发表于 11-27 15:40 867次阅读

    单模光纤和多模光纤有哪些明显差异

    单模光纤和多模光纤在传输距离、传输带宽、光源、色散等方面存在明显的差异。 传输距离:单模光纤通常用于传输
    的头像 发表于 11-27 09:41 537次阅读

    光纤最大损耗值是多少?

    光纤最大损耗值是多少? 光纤是一种优秀的传输介质,在现代通讯中被广泛应用。它的优点在于传输速度快、传输距离远、信号传输稳定、抗干扰能力强等。但是在
    的头像 发表于 09-07 14:56 1358次阅读

    光纤连接器对数据传输距离的限制

    不同类型的光纤具有不同的传输特性。常见的光纤类型包括单模光纤(Single-Mode Fiber,SMF)和多模光纤(Multi-Mode Fiber,MMF)。单模
    的头像 发表于 06-27 16:42 734次阅读

    光纤接入有哪些类型 光纤的连接方式有几种

    单模光纤尾纤适用于长距离、高速传输和窄波长范围的应用,它具有较小的模式色散和损耗,适用于需要长距离传输的光网络和光通信系统。
    发表于 06-25 17:24 2099次阅读

    国盛激光光纤激光器设备

    一、 光纤激光器产品介绍: 光纤激光器是一种使用光纤作为增益介质来放大光的
    的头像 发表于 05-08 17:20 486次阅读
    国盛<b class='flag-5'>激光光纤</b><b class='flag-5'>激光</b>器设备