0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

ARM Cortex-M学习笔记:Cortex-M启动流程详解

CHANBAEK 来源:嵌入式实验楼 作者: BruceOu 2023-05-15 14:54 次阅读

开发环境:

处理器STM32F103

MDK:5.30

STM32立方体MX:6.0.1

对于我们常用的桌面操作系统而言,我们在开发应用时,并不关心系统的初始化,绝大多数应用程序是在操作系统运行后才开始运行的,操作系统已经提供了一个合适的运行环境,然而对于嵌入式设备而言,在设备上电后,所有的一切都需要由开发者来设置,这里处理器是没有堆栈,没有中断,更没有外围设备,这些工作是需要软件来指定的,而且不同的CPU类型、 不同大小的内存和不同种类的外设,其初始化工作都是不同的。 本文将以STMF103(基于Cortex-M3)为例进行讲解。

在开始正式讲解之前,你需要了解ARM寄存器汇编以及反编译相关的知识,这些可以参考笔者博文。

下面我们就来具体看一下用户从Flash启动STM32的过程,主要讲解从上电复位到main函数的过程。 主要有以下步骤:

1.初始化堆栈指针 SP=_initial_sp,初始化 PC 指针=Reset_Handler

2.初始化中断向量表

3.配置系统时钟

4.调用 C 库函数_main 初始化用户堆栈,然后进入 main 函数。

在开始讲解之前,我们需要了解STM32的启动模式。

3.1 STM32的启动模式

首先要讲一下STM32的启动模式,因为启动模式决定了向量表的位置,STM32有三种启动模式:

1)主闪存存储器(Main Flash)启动 :从STM32内置的Flash启动(0x08000000-0x0807 FFFF),一般我们使用JTAG或者SWD模式下载程序时,就是下载到这个里面,重启后也直接从这启动程序。 以0x08000000 对应的内存为例,则该块内存既可以通过0x00000000 操作也可以通过0x08000000 操作,且都是操作的同一块内存。

2)系统存储器(System Memory)启动 :从系统存储器启动(0x1FFFF000 - 0x1FFFF7FF),这种模式启动的程序功能是由厂家设置的。一般来说,我们选用这种启动模式时,是为了从串口下载程序,因为在厂家提供的ISP程序中,提供了串口下载程序的固件,可以通过这个ISP程序将用户程序下载到系统的Flash中。以0x1FFFFFF0对应的内存为例,则该块内存既可以通过0x00000000 操作也可以通过0x1FFFFFF0操作,且都是操作的同一块内存。

3)片上SRAM启动 :从内置SRAM启动(0x20000000-0x3FFFFFFF),既然是SRAM,自然也就没有程序存储的能力了,这个模式一般用于程序调试。SRAM 只能通过0x20000000进行操作,与上述两者不同。从SRAM 启动时,需要在应用程序初始化代码中重新设置向量表的位置。

用户可以通过设置BOOT0和BOOT1的引脚电平状态,来选择复位后的启动模式。如下图所示:

启动模式只决定程序烧录的位置 ,加载完程序之后会有一个重映射(映射到0x00000000地址位置);真正产生复位信号的时候,CPU还是从开始位置执行。

值得注意的是STM32上电复位以后,代码区都是从0x00000000开始的,三种启动模式只是将各自存储空间的地址映射到0x00000000中。

3.2 STM32的启动文件分析

因为启动过程主要是由汇编完成的,因此STM32的启动的大部分内容都是在启动文件里。笔者的启动文件是startup_stm32f103xe.s,不管使用标准库还是使用HAL库,启动文件都是差不多的。

3.2.1堆栈定义

1. Stack栈

栈的作用是用于局部变量,函数调用,函数形参等的开销,栈的大小不能超过内部SRAM 的大小。 当程序较大时,需要修改栈的大小,不然可能会出现的HardFault的错误。

第33行:表示开辟栈的大小为 0X00000400(1KB),EQU是伪指令,相当于C 中的 define。

第35行:开辟一段可读可写数据空间,ARER 伪指令表示下面将开始定义一个代码段或者数据段。 此处是定义数据段。 ARER 后面的关键字表示这个段的属性。 段名为STACK,可以任意命名; NOINIT 表示不初始化; READWRITE 表示可读可写,ALIGN=3,表示按照 8 字节对齐。

第36行:SPACE 用于分配大小等于 Stack_Size连续内存空间,单位为字节。

第37行: __initial_sp表示栈顶地址。 栈是由高向低生长的。

2.Heap堆

堆主要用来动态内存的分配,像 malloc()函数申请的内存就在堆中。

开辟堆的大小为 0X00000200(512 字节),名字为 HEAP,NOINIT 即不初始化,可读可写,8字节对齐。 __heap_base 表示对的起始地址,__heap_limit 表示堆的结束地址。

3.2.2向量表

向量表是一个WORD( 32 位整数)数组,每个下标对应一种异常,该下标元素的值则是该 ESR 的入口地址。 向量表在地址空间中的位置是可以设置的,通过 NVIC 中的一个重定位寄存器来指出向量表的地址。 在复位后,该寄存器的值为 0。 因此,在地址 0 (即 FLASH 地址 0)处必须包含一张向量表,用于初始时的异常分配。

值得注意的是这里有个另类: 0 号类型并不是什么入口地址,而是给出了复位后 MSP 的初值,后面会具体讲解。

......

第55行:定义一块代码段,段名字是RESET,READONLY 表示只读。

第56-58行:使用EXPORT将3个标识符申明为可被外部引用,声明 __Vectors、__Vectors_End 和__Vectors_Size 具有全局属性。 这几个变量在Keil分散加载时会用到。

第60行:__Vectors 表示向量表起始地址,DCD 表示分配 1 个 4 字节的空间。 每行 DCD 都会生成一个 4 字节的二进制代码,中断向量表存放的实际上是中断服务程序的入口地址。 当异常(也即是中断事件)发生时,CPU 的中断系统会将相应的入口地址赋值给 PC 程序计数器,之后就开始执行中断服务程序。 在60行之后,依次定义了中断服务程序的入口地址。

第138行:__Vectors_End 为向量表结束地址。

第139行:__Vectors_Size则是向量表的大小,向量表的大小是通过__Vectors 和__Vectors_End 相减得到的。

上述向量表可以在《Reference manual》中找到的,笔者这里只截取了部分。

3.2.3复位程序

复位程序是系统上电后执行的第一个程序 ,复位程序也是中断程序,只是这个程序比较特殊,因此单独提出来讲解。

第145行:定义了一个服务程序,PROC表示程序的开始。

第146行:使用EXPORT将Reset_Handler申明为可被外部引用,后面WEAK表示弱定义,如果外部文件定义了该标号则首先引用该标号,如果外部文件没有声明也不会出错。 这里表示复位程序可以由用户在其他文件重新实现,这种写法在HAL库中是很常见的。

第147-148行:表示该标号来自外部文件,SystemInit()是一个库函数,在system_stm32f1xx.c中定义的,__main 是一个标准的 C 库函数,主要作用是初始化用户堆栈,这个是由编译器完成的,该函数最终会调用我们自己写的main函数,从而进入C世界中。

第149行:这是一条汇编指令,表示从存储器中加载SystemInit到一个寄存器R0的地址中。

第150行:汇编指令,表示跳转到寄存器R0的地址,并根据寄存器的 LSE 确定处理器的状态,还要把跳转前的下条指令地址保存到 LR。

第151行:和149行是一个意思,表示从存储器中加载__main到一个寄存器R0的地址中。

第152行:和150稍微不同,这里跳转到至指定寄存器的地址后,不会返回。

第153行:和PROC是对应的,表示程序的结束。

值得注意的是,这里的__main和C语言中的main()不是一样东西,__main是C lib中的函数,也就是在Keil中自带的; 而main()函数是C的入口,main()会被__main调用。

3.2.4中断服务程序

我们平时要使用哪个中断,就需要编写相应的中断服务程序,只是启动文件把这些函数留出来了,但是内容都是空的,真正的中断复服务程序需要我们在外部的 C 文件里面重新实现,这里只是提前占了一个位置罢了。

这部分没啥好说的,和服务程序类似的,只需要注意‘B .’ 语句,B表示跳转,这里跳转到一个‘.’,即表示无线循环。

3.2.5堆栈初始化

堆栈初始化是由一个IF条件来实现的,MICROLIB的定义与否决定了堆栈的初始化方式。

这个定义是在Options->Target中设置的。

如果没有定义__MICROLIB ,则会使用双段存储器模式,且声明了__user_initial_stackheap具有全局属性,这需要开发者自己来初始化堆栈。

这部分也没啥讲的,需要注意的是,ALIGN表示对指令或者数据存放的地址进行对齐,缺省表示4字节对齐。

3.2.6其他

第50行:PRESERVE8 用于指定当前文件的堆栈按照 8 字节对齐。

第51行:THUMB 表示后面指令兼容 THUMB 指令。 现在 Cortex-M 系列的都使用 THUMB-2 指令集,THUMB-2 是 32 位的,兼容 16 位和 32 位的指令,是 THUMB 的超集。

3.3 STM32的启动流程实例分析

有了前面的分析,接下来就来具体看看STM32启动流程的具体内容。

3.3.1初始化SP、PC、向量表

当系统复位后,处理器首先读取向量表中的前两个字(8 个字节),第一个字存入 MSP,第二个字为复位向量,也就是程序执行的起始地址。

这里通过J-Flash打开hex文件。

硬件这时自动从0x0800 0000位置处读取数据赋给栈指针SP,然后自动从0x0800 0004位置处读取数据赋给PC,完成了复位操作,SP= 0x0200 0410,PC = 0x0800 0145。

初始化SP、PC紧接着就初始化向量表,如果感觉看HEX文件抽象,我们看看反汇编文件吧。

是不是更容易些,是不是和《Reference manual》中的向量表对应起来了。 其实看反汇编文件更好理解STM32的启动流程,只是有些抽象。

3.3.2设置系统时钟

细心的朋友可能发现,PC=0x08000145的地址是没有对齐的。 然后在反汇编文件中却是这样的:

这里是硬件自动对齐到 0x08000144,并执行SystemInit函数初始化系统时钟。

当然也可通过硬件调试来确认上面的分析:

接下来就会进入SystemInit函数中。

SystemInit函数内容如下:

/**
 * @brief  Setup themicrocontroller system
 *         Initialize the EmbeddedFlash Interface, the PLL and update the
 *         SystemCoreClockvariable.
 * @note   This function should beused only after reset.
 * @param  None
 * @retval None
 */
void SystemInit (void)
{
 /* Reset the RCC clock configuration to the default reset state(fordebug purpose) */
 /* Set HSION bit */
 RCC->CR |= 0x00000001U;

 /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */
#if !defined(STM32F105xC)&& !defined(STM32F107xC)
 RCC->CFGR &= 0xF8FF0000U;
#else
 RCC->CFGR &= 0xF0FF0000U;
#endif /* STM32F105xC */  

 /* Reset HSEON, CSSON and PLLON bits */
 RCC->CR &= 0xFEF6FFFFU;

 /* Reset HSEBYP bit */
 RCC->CR &= 0xFFFBFFFFU;

 /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */
 RCC->CFGR &= 0xFF80FFFFU;

#if defined(STM32F105xC) ||defined(STM32F107xC)
 /* Reset PLL2ON and PLL3ON bits */
 RCC->CR &= 0xEBFFFFFFU;

 /* Disable all interrupts and clear pending bits  */
 RCC->CIR = 0x00FF0000U;

 /* Reset CFGR2 register */
 RCC->CFGR2 = 0x00000000U;
#elif defined(STM32F100xB) ||defined(STM32F100xE)
 /* Disable all interrupts and clear pending bits  */
 RCC->CIR = 0x009F0000U;

 /* Reset CFGR2 register */
 RCC->CFGR2 = 0x00000000U;     
#else
 /* Disable all interrupts and clear pending bits  */
 RCC->CIR = 0x009F0000U;
#endif /* STM32F105xC */

#if defined(STM32F100xE) ||defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) ||defined(STM32F103xG)
 #ifdef DATA_IN_ExtSRAM
    SystemInit_ExtMemCtl();
 #endif /* DATA_IN_ExtSRAM */
#endif

#ifdef VECT_TAB_SRAM
 SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocationin Internal SRAM. */
#else
 SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocationin Internal FLASH. */
#endif
}

前面部分是配置时钟的,具体参考手册吧,这里需要注意以下代码:

#ifdef VECT_TAB_SRAM
 SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocationin Internal SRAM. */
#else
 SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocationin Internal FLASH. */
#endif

默认是没有开启VECT_TAB_SRAM,则从FLASH中启动,VTOR 寄存器存放的是中断向量表的起始地址,在IAP升级会修改这里的偏移量,后面讲解IAP升级在细讲吧。

3.3.3初始化堆栈并进入main

执行指令LDR R0, =__main,然后就跳转到__main程序段运行,当然这里指标准库的__main函数。

这中间初始化了栈区。

这段代码是个循环(BCC 0x08000192),实际运行时候循环了两次。 第一次运行的时候,读取“加载数据段的函数”的地址并跳转到该函数处运行(注意加载已初始化数据段和未初始化数据段用的是同一个函数); 第二次运行的时候,读取“初始化栈的函数”的地址并跳转到该函数处运行。

最后就进入C文件的main函数中,至此,启动过程到此结束。

最后,总结下STM32从flash的启动流程。

MCU上电后从0x0800 0000处读取栈顶地址并保存,然后从0x0800 0004读取中断向量表的起始地址,这就是复位程序的入口地址,接着跳转到复位程序入口处,初始向量表,然后设置时钟,设置堆栈,最后跳转到C空间的main函数,即进入用户程序。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 处理器
    +关注

    关注

    68

    文章

    18288

    浏览量

    222193
  • ARM
    ARM
    +关注

    关注

    134

    文章

    8653

    浏览量

    361832
  • 操作系统
    +关注

    关注

    37

    文章

    6288

    浏览量

    121896
  • Cortex-M3
    +关注

    关注

    9

    文章

    268

    浏览量

    59165
  • stm32cubemx
    +关注

    关注

    5

    文章

    260

    浏览量

    14448
收藏 人收藏

    评论

    相关推荐

    如何选择正确的Cortex-M处理器?

    系统级特性,调试和追踪功能和性能的比较,欢迎大家一起学习了解。1、简介今天, ARM Cortex-M 处理器家族有8款处理器成员。除此之外,ARM的产品系列还有很多其他的处理器成员。
    发表于 10-22 08:16

    Cortex-M 系列处理特点和区别详解

    Cortex-M 处理器无缝发展到另一个成为可能。盆友们想要系统学习或者提升ARM 单片机方面的技能可以加xyd118118ARM Cortex-
    发表于 01-14 10:13

    基于Cortex-M原型系统建立的Cortex-M3 DesignStart原型

    采用Cortex-M原型系统建立Cortex-M3 DesignStart原型为什么选择Cortex-M原型系统?
    发表于 02-01 06:56

    Cortex-M入门资料和书籍分享

    Cortex-M入门在网上看博客逛论坛也是能学到些东西的,但通常是知识点,不能构成知识面。书籍通常会系统性地讲述,通过书籍可以建立起知识面,只有建立起了知识面才算是掌握。推荐两本书:《ARM
    发表于 07-01 09:38

    cortex-m 单片机在 arm产品中的位置及类别 精选资料分享

    cortex-m 单片机在arm产品中的位置https://developer.arm.com/ip-products/processors 下面有1类 processor
    发表于 07-16 07:59

    ARM Cortex-M处理器详解 精选资料分享

    ARM Cortex-M处理器家族现在有8款处理器成员。在本文中,我们会比较Cortex-M系列处理器之间的产品特性,重点讲述如何根据产品应用选择正确的Cortex-M处理器。本文中会
    发表于 07-16 07:57

    cortex-m下各种微架构的区别是什么?

    cortex-m单片机在arm产品中的位置是哪里?cortex-m 单片机的类别有哪些?cortex-m下各种微架构的区别是什么?
    发表于 11-04 06:00

    常用的ARM Cortex-M处理器有哪些?

    常用的ARM Cortex-M处理器有哪些?
    发表于 11-05 07:20

    Cortex-M处理器优化的代码

    生成针对Cortex-M处理器优化的代码。嵌入式编码®Support Package的ARM®的Cortex®-M处理器可以生成使用CMSIS库数学运算的优化代码。将此生成的代码用于
    发表于 12-14 09:10

    ARM Cortex-M堆栈机制介绍

      大家好,我是痞子衡,是正经搞技术的痞子。今天痞子衡给大家介绍的是ARM Cortex-M堆栈机制。  今天给大家分享的这篇依旧是2016年之前痞子衡写的技术文档,花了点时间重新编排了一下
    发表于 12-16 06:26

    ARM Cortex-M内核的相关资料推荐

      大家好,我是痞子衡,是正经搞技术的痞子。今天痞子衡给大家介绍的是ARM Cortex-M功能模块,不过侧重点是三款安全特性处理器。  ARM Cortex-M处理器家族发展至今(2
    发表于 12-27 07:21

    ARM Cortex-M 开发实战指南入门篇(二)

    1、集成开发环境和非集成开发环境介绍嵌入式开发的第一步就是搭建开发环境,不同的硬件平台可能所需的环境还不太一样,而且还有可能出现千奇百怪的错误,本讲将讲解ARM Cortex-M开发的常用工具
    发表于 04-19 17:24

    Arm Cortex-M处理器—Cortex-M85介绍

    Arm发布了新一代的Cortex-M处理器,Cortex-M85。简单粗暴的打个比方:Cortex-M85 ≈ Cortex-M7Trust
    发表于 07-15 14:59

    ARM Cortex-M系列芯片神经网络推理库CMSIS-NN详解

    1、ARM Cortex-M系列芯片神经网络推理库CMSIS-NN详解CMSIS-NN是用于ARM Cortex-M系列的芯片的神经网络推理
    发表于 08-19 16:06

    ARM Cortex-M处理器对比表

    延迟和高确定性操作。 ARM Cortex-M处理器对比表1功能Cortex-M0 Cortex-M0+Cortex-M1 Cortex-M
    发表于 08-29 07:00