0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

造成光纤衰减的多种原因-科兰

jf_51241005 来源: jf_51241005 作者: jf_51241005 2023-05-06 10:26 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

造成光纤衰减的多种原因

1、造成光纤衰减的主要因素有:本征,弯曲,挤压,杂质,不均匀和对接等。

本征:是光纤的固有损耗,包括:瑞利散射,固有吸收等。

弯曲:光纤弯曲时部分光纤内的光会因散射而损失掉,造成损耗。

挤压:光纤受到挤压时产生微小的弯曲而造成的损耗。

杂质:光纤内杂质吸收和散射在光纤中传播的光,造成的损失。

不均匀:光纤材料的折射率不均匀造成的损耗。

对接:光纤对接时产生的损耗,如:不同轴(单模光纤同轴度要求小于0.8μm),端面与轴心不垂直,端面不平,对接心径不匹配和熔接质量差等。

当光从光纤的一端射入,从另一端**时,光的强度会减弱。这意味着光信号通过光纤传播后,光能量衰减了一部分。这说明光纤中有某些物质或因某种原因,阻挡光信号通过。这就是光纤的传输损耗。只有降低光纤损耗,才能使光信号畅通无阻。

2、光纤损耗的分类

光纤损耗大致可分为光纤具有的固有损耗以及光纤制成后由使用条件造成的附加损 耗。具体细分如下:

光纤损耗可分为固有损耗和附加损耗。

固有损耗包括散射损耗、吸收损耗和因光纤结构不完善引起的损耗。

附加损耗则包括微弯损耗、弯曲损耗和接续损耗。

其中,附加损耗是在光纤的铺设过程中人为造成的。在实际应用中,不可避免地要将光纤一根接一根地接起来,光纤连接会产生损耗。光纤微小弯曲、挤压、拉伸受力也会引起损耗。这些都是光纤使用条件引起的损耗。究其主要原因是在这些条件下,光纤纤芯中的传输模式发生了变化。附加损耗是可以尽量避免的。下面,我们只讨论光纤的固有损耗。

固有损耗中,散射损耗和吸收损耗是由光纤材料本身的特性决定的,在不同的工作波长下引起的固有损耗也不同。搞清楚产生损耗的机理,定量地分析各种因素引起的损耗的大小,对于研制低损耗光纤合理使用光纤有着极其重要的意义。

3、材料的吸收损耗

制造光纤的材料能够吸收光能。光纤材料中的粒子吸收光能以后,产生振动、发热,而将能量散失掉,这样就产生了吸收损耗。我们知道,物质是由原子、分子构成的,而原子又由原子核和核外电子组成,电子以一定的轨道围绕原子核旋转。这就像我们生活的地球以及金星、火星等行星都围绕太阳旋转一样,每一个电子都具有一定的能量,处在某一轨道上,或者说每一轨道都有一个确定的能级。

距原子核近的轨道能级较低,距原子核越远的轨道能级越高。轨道之间的这种能级差别的大小就叫能级差。当电子从低能级向高能级跃迁时,就要吸收相应级别的能级差的能量。

在光纤中,当某一能级的电子受到与该能级差相对应的波长的光照射时,则位于低能级轨道上的电子将跃迁到能级高的轨道上。这一电子吸收了光能,就产生了光的吸收损耗。

制造光纤的基本材料二氧化硅(SiO2)本身就吸收光,一个叫紫外吸收,另外一个叫红外吸收。目前光纤通信一般仅工作在0.8~1.6μm波长区,因此我们只讨论这一工作区的损耗。

石英玻璃中电子跃迁产生的吸收峰在紫外区的0.1~0.2μm波长左右。随着波长增大,其吸收作用逐渐减小,但影响区域很宽,直到1μm以上的波长。不过,紫外吸收对在红外区工作的石英光纤的影响不大。例如,在0.6μm波长的可见光区,紫外吸收可达1dB/km,在0.8μm波长时降到0.2~0.3dB/km,而在1.2μm波长时,大约只有0.ldB/km。

石英光纤的红外吸收损耗是由红外区材料的分子振动产生的。在2μm以上波段有几个振动吸收峰。

由于受光纤中各种掺杂元素的影响,石英光纤在2μm以上的波段不可能出现低损耗窗口,在1.85μm波长的理论极限损耗为ldB/km。

通过研究,还发现石英玻璃中有一些"破坏分子"在捣乱,主要是一些有害过渡金属杂质,如铜、铁、铬、锰等。这些"坏蛋"在光照射下,贪婪地吸收光能,乱蹦乱跳,造成了光能的损失。清除"捣乱分子",对制造光纤的材料进行格的化学提纯,就可以**降低

石英光纤中的另一个吸收源是氢氧根(OHˉ) 期的研究,人们发现氢氧根在光纤工作波段上有三个吸收峰,它们分别是0.95μm、1.24μm和1.38μm,其中1.38μm波长的吸收损耗最为严重,对光纤的影响也最大。在1.38μm波长,含量仅占0.0001的氢氧根产生的吸收峰损耗就高达33dB/km。

这些氢氧根是从哪里来的呢?氢氧根的来源很多,一是制造光纤的材料中有水分和氢氧化合物,这些氢氧化合物在原料提纯过程中不易被清除掉,最后仍以氢氧根的形式残留在光纤中;二是制造光纤的氢氧物中含有少量的水分;三是光纤的制造过程中因化学反应而生成了水;四是外界空气的进入带来了水蒸气。然而,现在的制造工艺已经发展到了相当高的水平,氢氧根的含量已经降到了足够低的程度,它对光纤的影响可以忽略不计了。

4、散射损耗

在黑夜里,用手电筒向空中照射,可以看到一束光柱。人们也曾看到过夜空中探照灯发出**光柱。

那么,为什么我们会看见这些光柱呢?这是因为有许多烟雾、灰尘等微小颗粒浮游于大气之中,光照射在这些颗粒上,产生了散射,就**了四面八方。这个现象是由瑞利最先发现的,所以人们把这种散射命名为"瑞利散射"。

散射是怎样产生的呢?原来组成物质的分子、原子、电子等微小粒子是以某些固有频率进行振动的,并能释放出波长与该振动频率相应的光。粒子的振动频率由粒子的大小来决定。粒子越大,振动频率越低,释放出的光的波长越长;粒子越小,振动频率越高,释放出的光的波长越短。这种振动频率称做粒子的固有振动频率。但是这种振动并不是自行产生,它需要一定的能量。一旦粒子受到具有一定波长的光照射,而照射光的频率与该粒子固有振动频率相同,就会引起共振。粒子内的电子便以该振动频率开始振动,结果是该粒子向四面八方散**光,入射光的能量被吸收而转化为粒子的能量,粒子又将能量重新以光能的形式**去。因此,对于在外部观察的人来说,看到的好像是光撞到粒子以后,向四面八方飞散出去了。

光纤内也有瑞利散射,由此而产生的光损耗就称为瑞利散射损耗。鉴于目前的光纤制造工艺水平,可以说瑞利散射损耗是无法避免的。但是,由于瑞利散射损耗的大小与光波长的4次方成反比,所以光纤工作在长波长区时,瑞利散射损耗的影响可以**减小。

5、先天不足,爱莫能助

光纤结构不完善,如由光纤中有气泡、杂质,或者粗细不均匀,特别是芯-包层交界面不平滑等,光线传到这些地方时,就会有一部分光散射到各个方向,造成损耗。这种损耗是可以想办法克服的,那就是要改善光纤制造的工艺。 散射使光**四面八方,其中有一部分散射光沿着与光纤传播相反的方向反射回来,在光纤的入射端可接收到这部分散射光。光的散射使得一部分光能受到损失,这是人们所不希望的。但是,这种现象也可以为我们所利用,因为如果我们在发送端对接收到的这部分光的强弱进行分析,可以检查出这根光纤的断点、缺陷和损耗大小。这样,通过人的聪明才智,就把坏事变成了好事.

审核编辑黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 光纤
    +关注

    关注

    20

    文章

    4317

    浏览量

    77563
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    硬件问题造成的MCU死机的原因

    关于MCU死机问题,近期小编在出差期间遇到多起,且原因不同。所以,今日小白借此机会讲一讲因硬件问题造成的MCU死机。 MCU不良 在遇到死机问题时,已经可以判定是硬件原因造成的前提下
    发表于 11-24 08:07

    单模光纤和多模光纤可以混用吗

    μm或62.5μm),允许多种光信号模式同时传输,存在模式色散,导致信号衰减,适合短距离传输。 混用后果:若将单模光纤与多模光模块混用,或反之,光信号会因模式不匹配产生严重衰减,导致传
    的头像 发表于 09-03 11:37 1709次阅读

    光缆一公里衰减多少db

    光缆每公里的衰减范围因光纤类型、工作波长、制造工艺及使用条件而异,典型值如下: 一、按光纤类型和工作波长划分 单模光纤 1310nm波长:衰减
    的头像 发表于 08-13 15:37 3308次阅读

    光纤光衰过大怎么解决

    光纤光衰过大的解决方法如下: 清洁与检查光纤接头: 光纤接头的污物是光衰的常见原因。定期使用95%乙醇擦拭光纤接头,确保接头表面干净无污,可
    的头像 发表于 08-06 10:30 1656次阅读

    光缆衰减多少算正常

    光缆衰减的正常范围及分析如下: 一、核心结论:衰减值在-28dBm以内均属正常,数值越低信号质量越好 理想范围: 普通光纤宽带:-20dBm至-25dBm(此范围内可支持200M以上高速网络
    的头像 发表于 08-04 10:02 9636次阅读
    光缆<b class='flag-5'>衰减</b>多少算正常

    什么是G.652B光纤和G.655光纤

    的改进版本,属于非色散位移单模光纤(也称为常规单模光纤),在1310nm波长处色散为零,通过调整折射率分布使材料色散与波导色散相互抵消。 核心优势:具备较低的衰减、色散和偏振模色散(PMD),适用于
    的头像 发表于 08-01 10:24 1763次阅读
    什么是G.652B<b class='flag-5'>光纤</b>和G.655<b class='flag-5'>光纤</b>

    网络光纤出问题一般是什么原因导致的呢

    网络光纤故障的成因复杂多样,涉及物理层、环境因素、设备异常及人为操作等多个维度。以下是常见原因的分类解析及典型案例,帮助快速定位问题根源: 一、物理层损伤(占比约40%) 光纤断裂 原因
    的头像 发表于 06-17 10:05 2590次阅读
    网络<b class='flag-5'>光纤</b>出问题一般是什么<b class='flag-5'>原因</b>导致的呢

    单模光纤跳线和多模光纤跳线能混用吗

    不建议将单模光纤跳线和多模光纤跳线混用,原因如下: 传输模式不同:单模光纤只传输一种模式的光,多模光纤允许
    的头像 发表于 06-05 10:04 1810次阅读

    每公里光缆正常衰减多少

    每公里光缆的正常衰减范围因光纤类型和工作波长而异,以下是常见情况: 1. 单模光纤 1310nm波长:衰减系数通常为 0.3~0.4 dB/km,典型值为 0.35 dB/km。 15
    的头像 发表于 04-15 10:52 8412次阅读

    光纤0.3db是什么意思

    光纤0.3dB 指的是光纤在传输过程中,信号的衰减量为 0.3 分贝(dB)。在光纤通信中,dB 是一个用于量化信号强度、功率增益或损耗的对数单位,0.3dB 的
    的头像 发表于 04-14 11:02 1741次阅读

    多模光纤可以接单模吗

    多模光纤不能直接连接单模光纤,强行连接会导致信号无法正常传输,甚至可能损坏设备。以下是具体原因及解决方案: 一、多模与单模光纤的核心差异 二、直接连接的风险 光信号无法耦合 多模
    的头像 发表于 04-09 10:19 3147次阅读
    多模<b class='flag-5'>光纤</b>可以接单模吗

    光纤护套颜色区分的原因解析

    光纤护套颜色(如黑色、白色)的差异主要源于行业标准、应用场景及技术规格的需求,以下是具体原因: 1. 行业规范与标识 国际电信联盟(ITU-T)等组织对光纤类型(如单模、多模)和传输波长(如
    的头像 发表于 04-02 10:00 966次阅读

    单芯光纤转双芯怎么转

    。但需要注意的是,由于光纤的传输是受模式限制的,因此两根单芯光纤的相对位置、衰减等因素都需要考虑到,否则可能会造成信号衰减和失真。 二、熔接
    的头像 发表于 01-16 09:53 2568次阅读

    光纤通信信号容易衰减

    光纤通信中的信号确实存在衰减的问题,但并不意味着信号容易衰减到无法使用的程度。光纤通信信号的衰减是由多种
    的头像 发表于 01-09 09:52 1525次阅读

    如何解决光纤宽带的信号问题

    在数字化时代,光纤宽带因其高速、稳定的网络连接而受到广泛青睐。然而,即使是最好的技术也可能遇到信号问题。 一、光纤宽带信号问题的原因 光纤线路损坏 :
    的头像 发表于 01-02 09:45 2598次阅读