0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一种光栅型成像光谱仪光学系统设计

jf_64961214 来源:jf_64961214 作者:jf_64961214 2023-04-26 07:18 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

成像光谱仪是20世纪80年代在多光谱遥感成像技术的基础上发展起来的一种能获取物体的二维空间信息和一维光谱信息的光学遥感仪器。它广泛应用在军事、海洋和地质勘探等领域。成像光谱仪按分光方式的不同可分为光栅色散型、棱镜色散型、滤光片型、干涉型和计算层析型。其中,光栅色散型成像光谱仪由于原理简洁、性能稳定、技术发展较早而得到了广泛的应用。并相对于棱镜色散型成像光谱仪具有色散均匀、光谱分辨率高、谱线弯曲小、色畸变小等优点,因此受到极大的关注。

光栅型成像光谱仪光学系统是由前置望远物镜及光谱成像系统构成。目前前置望远物镜结构大部分采用折反射式结构。最常用的结构形式卡塞格林系统的主要优点是:1)口径可以做到很大;2)不产生色差且工作波段范围宽;3)光学结构简单。但是传统的卡塞格林结构在主次镜均采用双曲面时也只能校正两种像差,如球差和彗差,即校正像差能力有限,从而不能得到满意的成像质量。针对上述问题,本文提出了一种设计方法可以得到较高像质。

采用传统的平面或凹面光栅分光的光谱成像系统均受像差校正的限制,数值孔径小,难以实现高的光谱和空间分辨率。本文采用平面光栅Czerny-Turner结构对光谱成像系统进行优化设计,发现难以满足仪器光谱分辨率及成像质量的要求。针对上述问题,为了达到仪器设计要求,提出了基于凸面光栅的设计方法。

IsoPlane-320上再次得到展现,它独特的零像差光学设计让图像和光谱的分辨率大幅度提高,同时还拥有更强的光通量。其分辨率可以媲美1/2米焦长的光谱仪,却是其光通量的两倍,使得IsoPlane成为高要求低光实验中理想的选择。

wKgaomRIX8mAa7ycAABTzs7vYi072.jpeg

IsoPlane-160用非常小巧的设计达到了1/3米焦长光谱仪才能达到的分辨率。它 f/3.88的光学设计提高了分辨率,不仅是光谱应用,也是显微光谱仪的理想选择。

wKgZomRIX8mAbx8yAABe2qbRkus57.jpeg

wKgaomRIX8mAOdC4AABHuAfqLZw41.jpeg

光学设计将象差降低到零,与普通光谱仪相比,大幅度的提高了空间分辨和光谱分辨率。大口径的光学设计以及可以更换的三光栅塔轮,满足了客户从紫外到近红外的或高或低分辨率的光谱探测需求。

1 光栅型成像光谱仪成像原理

光栅型成像光谱仪成像原理如图1所示。目标物的反射光通过前置望远物镜成像在狭缝平面上,狭缝作为视场光栏使物体的条带像通过,挡掉其他部分的光。目标物的条带像经准直物镜照射到色散元件上,然后经色散元件在垂直狭缝方向将其作为波长色散,最后由成像物镜会聚成像在成像光谱仪像平面上的二维CCD探测器上。这样,面阵探测器得到的每帧图像是与狭缝对应的目标条带区域的光谱图像数据。若让成像光谱仪相对目标运动,让前置物镜形成的目标像依次通过狭缝,同时记录狭缝的光谱图像,即得到目标的光谱图像三维数据。运用软件进行图像处理,可得到目标各个波段的二维图像,空间每一点的光谱分布,或多个波长合成的彩色图像,因此成像光谱仪可以更有效地发现、识别目标,可研究物质的空间分布。

wKgZomRIX8qAc0fiAACUO8aiCzA405.png

图1.成像光谱仪成像原理图

2 系统光学参数的确定

成像光谱仪光学系统参数包括望远物镜的光学参数和光谱成像系统的光学参数。光谱成像系统是成像光谱仪光学系统的核心部分。因此,根据该系统的使用要求,首先根据相关理论确定光谱成像系统的光学参数,然后通过前置望远系统与光谱成像系统远心匹配原则确定的前置望远物镜的光学参数。最终确定的光学参数如表1所示。

wKgaomRIX8qAKth1AADBLvqB-ug38.jpeg

3 成像光谱仪光学系统设计

光栅型成像光谱仪光学系统由前置望远物镜与光栅光谱成像系统构成。前置望远物镜是整个成像光谱仪光线的公共入口, 能够将远处目标的像成在狭缝处以实现推扫成像的目的。光栅型光谱成像系统由准直物镜、 光栅和成像物镜3 部分组成。准直物镜使入射光栅的光束为平行光束, 此平行光束经过光栅色散后由成像物镜汇聚到像平面。因此, 光栅型成像光谱仪的设计由前置望远物镜设计和光谱成像系统设计两部分组成。

3.1前置望远物镜的设计

从系统的光学参数可以看出,该系统视场角较小,所以轴外像差对整个像质的影响不大。因此首先考虑用卡塞格林结构为初始结构进行设计。根据卡塞格林像差与遮拦比和放大率的关系,以及要满足主次镜曲率和主次镜间距均小于零的约束条件。经过反复几次计算,最终得到的初始结构参数见表2所示

wKgZomRIX8qAN6YNAABQvYnnxjM059.png

由于该系统视场角和相对孔径不大,所以主要考虑的是球差及彗差的校正,因此将主次镜半径、间距以及主次镜的二次曲面系数c1c2设为变量优化,优化完成后2个反射面均为双曲面,主次镜二次曲面系数最终分别为-1.106935和-1.708386。最终优化的结果如图2和图3所示。

wKgaomRIX8qAeGOfAAAqv61bCys73.jpeg

图2.传统卡塞格林望远物镜光学系统图

wKgZomRIX8uAbCboAACWzgk9pkc55.jpeg

图3.传统卡塞格林望远物镜像差曲线图

审核编辑黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 光栅
    +关注

    关注

    0

    文章

    300

    浏览量

    28373
  • 光谱仪
    +关注

    关注

    2

    文章

    1202

    浏览量

    32355
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    Virtuallab Fusion应用:光栅的偏振分析

    光栅是许多经典和现代光学系统的基本组成元件,如光谱仪和近眼显示领域。光栅个特征是对入射光的偏振敏感性,以及通常情况下较强的矢量特性。 无
    发表于 06-16 08:50

    VirtualLab:光学系统的三维可视化

    元件和探测器的位置,以及快速了解光在系统内的传播。所应用的三维视图建模技术可与经典的光线追迹相媲美。 如何生成系统视图文档 光学系统
    发表于 05-30 08:45

    SOL 成像光谱仪散光校正

    光学系统中的大量像差中,特别注意像散,因为这种像差对于所有“经典”光谱仪器来说都是典型的,并且非常重要。 用于光谱仪器的镜面透镜没有对称轴,除了与传统中心系统相关的像差外,还具有去走
    的头像 发表于 05-29 07:52 306次阅读
    SOL <b class='flag-5'>成像</b><b class='flag-5'>光谱仪</b>散光校正

    VirtualLab:用于微结构晶片检测的光学系统

    各种不同的组件中,具体取决于预期用途。在这种情况下,我们将堆栈加载到光学设置中的光栅组件中,以便模拟整个系统。有关详细信息,请参阅:
    发表于 05-28 08:45

    OCAD应用:单反射镜扫描光学系统初始结构设计

    图1.带有端部反射镜及保护玻璃的单反射镜扫描系统示意图 单反射镜扫描光学系统往往多设在光学系统端部用以扫描物方视场,故有常称端部反射镜。由于具有单次反射面的反射棱镜也具有反射镜的功能,也经常
    发表于 05-27 08:44

    OCAD应用:利用OCAD进行光学系统的设计

    。绘图结果如图4。依此类推可以反复绘制许多所需要的透镜元素构成光学系统。 图3.透镜的绘制过程 图4.透镜的绘制 Ⅱ 反射镜的绘制 反射镜同样也是构成光学系统的组成元素之。由于反射镜通过对光线反射
    发表于 05-23 08:51

    VirtualLab Fusion应用:使用optiSLang进行光栅优化

    进行优化 -在本例中,光学系统由平面波光源和用于周期性介质的光导耦合探测器组成。 4. VirtualLab Fusion – 光导耦合探测器 光波导耦合探测器 -光波导耦合探测器是一种特殊的工具
    发表于 03-18 08:51

    手持式地物光谱仪的优势解析

    在遥感探测领域,手持式地物光谱仪正以其独特的优势,掀起场技术革命。这种便携式设备能够快速获取地物的光谱特征,为精准识别和分类提供可靠依据。 手持式地物光谱仪采用先进的
    的头像 发表于 03-05 15:05 802次阅读
    手持式地物<b class='flag-5'>光谱仪</b>的优势解析

    离轴光学系统的优势

    的观测和导航具有重要意义。 2.优秀的像差纠正能力 离轴光学系统可以有效地纠正各种类型的像差,包括像散和球差。像差是光学系统中的个重要问题,会导致图像模糊、畸变等问题。而离轴光学系统
    的头像 发表于 02-12 06:15 693次阅读
    离轴<b class='flag-5'>光学系统</b>的优势

    光谱仪的工作原理

    光谱仪,又称分光,是一种将含有多种波长光的复合光分解为具体单光谱线的科学仪器。其工作原理基于光的色散现象,具体过程如下:   
    的头像 发表于 01-28 14:05 6159次阅读

    将测量的太阳光谱导入VirtualLab Fusion

    摘要 光源是任何光学系统的重要组成部分,而能够复现光源最相关的物理特性的模型是任何光学仿真成功的基础。个非常常用的光源是太阳发出的光,其复杂的辐射光谱是其最显著的特征之
    发表于 01-23 10:22

    光栅的偏振分析

    光栅是许多经典和现代光学系统的基本组成元件,如光谱仪和近眼显示领域。光栅个特征是对入射光的偏振敏感性,以及通常情况下较强的矢量特性。 无
    发表于 01-13 09:49

    反射光栅光学系统结构中光栅系统的配置与优化

    “Littrow结构”是指那些包含反射光栅光学系统,其中光栅方向被设置为可以使工作阶(通常是第衍射阶)沿着入射光束的方向返回。这可以用于各种不同的应用,例如,在激光谐振器的背景下,
    发表于 01-11 13:19

    闪耀光栅的Littrow配置

    摘要 Littrow结构是单色器、光谱仪和谐振器中一种非常常用的定向闪耀光栅的方法,其目的是在衍射角等于入射角的情况下获得最高效率。显然,这种类型的系统对不同元件的位置非常敏感,此外,
    发表于 01-10 08:59

    Littrow结构中光栅系统的配置与优化

    “Littrow结构”是指那些包含反射光栅光学系统,其中光栅方向被设置为可以使工作阶(通常是第衍射阶)沿着入射光束的方向返回。这可以用于各种不同的应用,例如,在激光谐振器的背景下,
    发表于 12-25 15:35