0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一种光栅型成像光谱仪光学系统设计

jf_64961214 来源:jf_64961214 作者:jf_64961214 2023-04-26 07:18 次阅读

成像光谱仪是20世纪80年代在多光谱遥感成像技术的基础上发展起来的一种能获取物体的二维空间信息和一维光谱信息的光学遥感仪器。它广泛应用在军事、海洋和地质勘探等领域。成像光谱仪按分光方式的不同可分为光栅色散型、棱镜色散型、滤光片型、干涉型和计算层析型。其中,光栅色散型成像光谱仪由于原理简洁、性能稳定、技术发展较早而得到了广泛的应用。并相对于棱镜色散型成像光谱仪具有色散均匀、光谱分辨率高、谱线弯曲小、色畸变小等优点,因此受到极大的关注。

光栅型成像光谱仪光学系统是由前置望远物镜及光谱成像系统构成。目前前置望远物镜结构大部分采用折反射式结构。最常用的结构形式卡塞格林系统的主要优点是:1)口径可以做到很大;2)不产生色差且工作波段范围宽;3)光学结构简单。但是传统的卡塞格林结构在主次镜均采用双曲面时也只能校正两种像差,如球差和彗差,即校正像差能力有限,从而不能得到满意的成像质量。针对上述问题,本文提出了一种设计方法可以得到较高像质。

采用传统的平面或凹面光栅分光的光谱成像系统均受像差校正的限制,数值孔径小,难以实现高的光谱和空间分辨率。本文采用平面光栅Czerny-Turner结构对光谱成像系统进行优化设计,发现难以满足仪器光谱分辨率及成像质量的要求。针对上述问题,为了达到仪器设计要求,提出了基于凸面光栅的设计方法。

IsoPlane-320上再次得到展现,它独特的零像差光学设计让图像和光谱的分辨率大幅度提高,同时还拥有更强的光通量。其分辨率可以媲美1/2米焦长的光谱仪,却是其光通量的两倍,使得IsoPlane成为高要求低光实验中理想的选择。

wKgaomRIX8mAa7ycAABTzs7vYi072.jpeg

IsoPlane-160用非常小巧的设计达到了1/3米焦长光谱仪才能达到的分辨率。它 f/3.88的光学设计提高了分辨率,不仅是光谱应用,也是显微光谱仪的理想选择。

wKgZomRIX8mAbx8yAABe2qbRkus57.jpeg

wKgaomRIX8mAOdC4AABHuAfqLZw41.jpeg

光学设计将象差降低到零,与普通光谱仪相比,大幅度的提高了空间分辨和光谱分辨率。大口径的光学设计以及可以更换的三光栅塔轮,满足了客户从紫外到近红外的或高或低分辨率的光谱探测需求。

1 光栅型成像光谱仪成像原理

光栅型成像光谱仪成像原理如图1所示。目标物的反射光通过前置望远物镜成像在狭缝平面上,狭缝作为视场光栏使物体的条带像通过,挡掉其他部分的光。目标物的条带像经准直物镜照射到色散元件上,然后经色散元件在垂直狭缝方向将其作为波长色散,最后由成像物镜会聚成像在成像光谱仪像平面上的二维CCD探测器上。这样,面阵探测器得到的每帧图像是与狭缝对应的目标条带区域的光谱图像数据。若让成像光谱仪相对目标运动,让前置物镜形成的目标像依次通过狭缝,同时记录狭缝的光谱图像,即得到目标的光谱图像三维数据。运用软件进行图像处理,可得到目标各个波段的二维图像,空间每一点的光谱分布,或多个波长合成的彩色图像,因此成像光谱仪可以更有效地发现、识别目标,可研究物质的空间分布。

wKgZomRIX8qAc0fiAACUO8aiCzA405.png

图1.成像光谱仪成像原理图

2 系统光学参数的确定

成像光谱仪光学系统参数包括望远物镜的光学参数和光谱成像系统的光学参数。光谱成像系统是成像光谱仪光学系统的核心部分。因此,根据该系统的使用要求,首先根据相关理论确定光谱成像系统的光学参数,然后通过前置望远系统与光谱成像系统远心匹配原则确定的前置望远物镜的光学参数。最终确定的光学参数如表1所示。

wKgaomRIX8qAKth1AADBLvqB-ug38.jpeg

3 成像光谱仪光学系统设计

光栅型成像光谱仪光学系统由前置望远物镜与光栅光谱成像系统构成。前置望远物镜是整个成像光谱仪光线的公共入口, 能够将远处目标的像成在狭缝处以实现推扫成像的目的。光栅型光谱成像系统由准直物镜、 光栅和成像物镜3 部分组成。准直物镜使入射光栅的光束为平行光束, 此平行光束经过光栅色散后由成像物镜汇聚到像平面。因此, 光栅型成像光谱仪的设计由前置望远物镜设计和光谱成像系统设计两部分组成。

3.1前置望远物镜的设计

从系统的光学参数可以看出,该系统视场角较小,所以轴外像差对整个像质的影响不大。因此首先考虑用卡塞格林结构为初始结构进行设计。根据卡塞格林像差与遮拦比和放大率的关系,以及要满足主次镜曲率和主次镜间距均小于零的约束条件。经过反复几次计算,最终得到的初始结构参数见表2所示

wKgZomRIX8qAN6YNAABQvYnnxjM059.png

由于该系统视场角和相对孔径不大,所以主要考虑的是球差及彗差的校正,因此将主次镜半径、间距以及主次镜的二次曲面系数c1c2设为变量优化,优化完成后2个反射面均为双曲面,主次镜二次曲面系数最终分别为-1.106935和-1.708386。最终优化的结果如图2和图3所示。

wKgaomRIX8qAeGOfAAAqv61bCys73.jpeg

图2.传统卡塞格林望远物镜光学系统图

wKgZomRIX8uAbCboAACWzgk9pkc55.jpeg

图3.传统卡塞格林望远物镜像差曲线图

审核编辑黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 光栅
    +关注

    关注

    0

    文章

    237

    浏览量

    27163
  • 光谱仪
    +关注

    关注

    2

    文章

    818

    浏览量

    30379
收藏 人收藏

    评论

    相关推荐

    光学系统的像方基本参数结构示意图

    成像光学领域中,可定义一种光学系统,光线通过该光学系统能够形成理想像即可忽略任何损耗与误差,定义该系统
    发表于 04-15 14:12 90次阅读
    <b class='flag-5'>光学系统</b>的像方基本参数结构示意图

    工业镜头光学系统成像质量客观评价

    瑞利判断与波前图都是根据波像差的大小来判断镜头光学系统成像质量,即实际成像波面与理想波面在出瞳处相切时,两波面之间的光程差就是波像差。
    发表于 04-09 14:30 102次阅读
    工业镜头<b class='flag-5'>光学系统</b>的<b class='flag-5'>成像</b>质量客观评价

    光学系统设计过程

    任何一种光学仪器的用途和使用条件必然会对它的光学系统提出一定的要求,因此,在我们进行光学设计之前一定要了解对光学系统的要求。
    的头像 发表于 01-23 13:46 193次阅读

    镜头在光学系统中的作用

    镜头分辨率在光学系统中的核心作用
    发表于 12-04 10:12 0次下载

    基于离轴成像光学系统的设计

              针对自由曲面能提升成像光学系统的性能和校正像差的特点,分析了自由曲面在离轴光学系统中的应用优势。光学系统选用视场角为30°×11°、焦距为150 mm、F数为3的C
    的头像 发表于 09-10 09:06 705次阅读
    基于离轴<b class='flag-5'>成像</b><b class='flag-5'>光学系统</b>的设计

    折反式变形光学系统设计

    摘要:变形光学系统具有双平面对称性,其在两个对称面内的焦距不同。利用变形光学系统能够在使用常规尺寸传感器的情况下获得更宽的视场。本文根据变形光学系统的一阶像差特性,提出了一种设计折反式
    的头像 发表于 08-30 06:29 317次阅读
    折反式变形<b class='flag-5'>光学系统</b>设计

    理想光学系统的研究

    光学系统多用于对物体成像。未经严格设计的光学系统只有在近轴区才能成完善像。由于在近轴区成像的范围和光束宽度均趋于无限小,因此没有很大的实用意义。
    的头像 发表于 08-19 14:30 690次阅读
    理想<b class='flag-5'>光学系统</b>的研究

    同轴折反式变形光学系统设计方法 变形光学系统的结构及像差特性

    摘要 :变形光学系统具有双平面对称性,其在两个对称面内的焦距不同。利用变形光学系统能够在使用常规尺寸传感器的情况下获得更宽的视场。本文根据变形光学系统的一阶像差特性,提出了一种设计折反
    的头像 发表于 07-31 15:15 569次阅读
    同轴折反式变形<b class='flag-5'>光学系统</b>设计方法 变形<b class='flag-5'>光学系统</b>的结构及像差特性

    折衍射混合成像光学系统设计

    摘要 :讨论了衍射光学元件的特殊成像性质;提出了带宽积分平均衍射效率的概念和应用;给出了作者在国内外完成的几个折衍射混合成像光学系统的应用实例,包括一个用衍射
    的头像 发表于 07-02 09:59 505次阅读
    折衍射混合<b class='flag-5'>成像</b><b class='flag-5'>光学系统</b>设计

    光学系统设计的不可忽略的参数介绍

    实际光学系统成像是不完善的,光线经光学系统各表面传输会形成多种像差,使成像产生模糊、变形等缺陷。像差就是光学系统
    发表于 06-19 12:45 251次阅读
    <b class='flag-5'>光学系统</b>设计的不可忽略的参数介绍

    光学系统的基本特性

      任何一种光学仪器的用途和使用条件必然会对它的光学系统提出一定的要求,因此,在我们进行光学设计之前一定要了解对光学系统的要求。这些要求概括
    的头像 发表于 06-14 10:17 1181次阅读

    光学系统设计流程

      引言 实际光学系统成像是不完善的,光线经光学系统各表面传输会形成多种像差,使成像产生模糊、变形等缺陷。像差就是光学系统
    的头像 发表于 06-13 09:41 621次阅读
    <b class='flag-5'>光学系统</b>设计流程

    光学系统的空间像原理

    实际上,许多光学系统是把空间的物点成像在一个像平面上,称为平面上的空间像,如望远物镜、照相物镜等属于这一类。 空间中的物点分布在距离光学系统的入射光瞳不同的距离上,这些点的成像原则与平
    的头像 发表于 05-22 10:11 1053次阅读
    <b class='flag-5'>光学系统</b>的空间像原理

    基于ZEMAX设计的宽光谱可见-短波红外成像光学系统

    光学系统结构的选择与该系统的应用场景密切相关,在机器视觉领域中,短波红外波段的成像系统往往具有大视场、小畸变和成像质量稳定的特点。合理地选择
    发表于 05-08 17:47 1125次阅读
    基于ZEMAX设计的宽<b class='flag-5'>光谱</b>可见-短波红外<b class='flag-5'>成像</b><b class='flag-5'>光学系统</b>

    地物光谱仪的原理是什么?-莱森光学

    光谱仪的工作原理是,它使用一个光源把光照射到物体表面,然后通过一个光学系统把反射光谱收集回来。收集回来的反射光谱会通过光谱仪的一个光电探测器
    的头像 发表于 05-04 15:49 1539次阅读
    地物<b class='flag-5'>光谱仪</b>的原理是什么?-莱森<b class='flag-5'>光学</b>