0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

智能配电网中三相APF-STATCOM谐波、不平衡负载及无功电流复合控制策略

安科瑞贾林杨 来源:jf_57853247 作者:jf_57853247 2023-04-20 14:55 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

摘要: 基于电能质量复合控制思想,针对智能配电网中谐波电流、负载不平衡、功率因数较低问题,给出一种谐波、负序及无功电流复合补偿策略,并给出关键参数设计方法。相关APF-STATCOM仿真、实验验证及产品现场运行实测结果验证了复合控制思想及补偿策略正确性及可行性。

关键词: 智能配电网;有源电力滤波器;静止同步补偿器;不平衡负载

近年来,出于节能环保的考虑,配电网终端供电系统中电力电子变换装置应用越来越广泛,如照明、办公、空调、电梯等相关供电系统,但这类非线性电能变换装置在改善用户端电能质量同时,往往诱发配电网侧谐波及无功电流问题,线损、中线及变压器过热、电表计量不准,甚至保护误动作等现象时有发生。传统无源滤波及投切电容器补偿尽管能够解决上述问题,且成本较低,但无法实时连续调节,存在过补偿、无功倒送甚至诱发配电网谐振可能性[1-3]。

为保障智能配电网终端用户高品质定制电力供应,随着瞬时功率理论及电力电子器件的发展,取代无源滤波及电容器无功补偿装置,其主电路拓扑结构及设计、谐波电流检测、补偿方法、控制及调制策略,以及启动特性均是业界研究及工业应用的持续热点话题[2-6]。

由于如今智能配电网中电能质量问题已经不再是一个单一的问题,而是一个非常复杂的系统问题。如图1所示,某公用设施配电系统中同时存在谐波电流、负载不平衡及功率因数较低等问题。电能质量复合控制技术逐渐被学术界及工业界提上研究日程[7-8]。

1 实际配电网电能质量问题

Fig. 1 Power quality issue in a real distributed grid

本文研究了智能配电网环境下,同时面对时变谐波电流、不平衡负载及无功问题,给出一种谐波、负序和无功电流复合补偿策略,及其关键参数设计方法。相关仿真、实验验证及产品现场运行实测结果验证了该控制策略的正确性及可行性。

APF-STATCOM电路结构及工作机理

图2 并联APF-STATCOM框图

**Fig. 2 An **APF-STATCOM diagram

如图2所示,该并联APF-STATCOM采用两电平三相四桥臂电压源逆变器拓扑,其中前三桥臂实现谐波及无功补偿,第四桥臂独立用于控制中线电流。这是由于三相四线制系统中,当负载不平衡时,中线往往流过较大零序电流,其不同于三相三线制系统。因此,增加与前三桥臂解耦控制的第四桥臂提供零序电流通路。此时APF-STATCOM产生一个与负载电流 iL ,abc中谐波、基波负序和零序分量之和相反的补偿电流 iC ,abc ,使得电源电流 iS ,abc仅提供负载电流基波正序分量,确保源输出对称三相电流并提高功率因数。

其中中线电流分离检测、锁相环、谐波电流检测、直流电压控制、电流控制及PWM调制是实现高性能APF-STATCOM的关键。锁相环、直流电压控制等与三相三线制系统相同,在此不作详细介绍。

关键问题分析

  1. 第四桥臂中线电流分离检测及控制

考虑到不平衡的三相四线制电路中的负载电流 iL ,abc所包含的零序分量iN相等,均为

(1)

如图2所示,此时中线电流采样i N ,与中线零序电流分量补偿指令iNref一并作为第四桥臂电流控制器输入,通过PI调节器得到调制信号获得第四桥臂开关信号。

同时有,

(2)

(3)

(4)

式中,仅含正序分量及负序分量,便于后续采用三相三线系统中i p -iq谐波电流检测算法

  1. 谐波电流检测

图3 ?用d-q变换检测谐波的原理图

**Fig. 3 **The schematic diagram of the harmonics detecting method based on d-q rotating coordination transformation

传统基于p-q瞬时无功功率理论检测谐波电流方法受电压畸变及不对称影响较大,实际场合并不适用[9]。实际场合多采用加入锁相环PLL电路的i p -iq瞬时无功功率理论检测方法,具体如图3所示,相关变换为

(5)

(6)

提取不含零序分量的电流 ,通过Park变换,将基波分量在 d-q - 0 坐标中变换到0Hz处(或先经 变换再经dq变换亦可),用低通滤波器提取基波正序分量即可[5]。

图2中直流电压调节器输出值生成部分有功电流指令,用于稳定直流母线电压并补偿功率损耗部分。若为提高功率因数,可以同时补偿无功电流,此时基波负序无功电流指令值设定为0。最后用负载电流减去基波电流正序分量,即可得到补偿负载电流中谐波分量和因负载不平衡导致的电流负序分量、零序分量的指令电流量以及无功电流正序分量的指令电流,实现APF-STATCOM功能。

  1. 电流PR谐振控制器设计

由于APF-STATCOM跟踪的电流指令是多种频率正弦量的叠加信号,传统SPWM调制采用PI控制必定存在稳态误差和相位偏移,补偿效果不佳,往往采用电流滞环调制,但变频调制不可避免带来滤波器设计及噪声控制问题[9]。

通过旋转坐标变换可以将正弦信号变为直流信号,从而在新的坐标系下采用PI控制器。但在APF-STATCOM控制领域,必须在多个频率下进行坐标变换,计算复杂,不利于实际应用。近年来,针对正弦信号的提出的PR控制器,在可以避免旋转坐标变换,计算量大大降低的同时,获得与同步坐标系下的PI控制器相同控制效果:能无稳态误差地跟踪特定频率的正弦信号,更重要的是可以对指定频率的谐波进行有选择地补偿。

(7)

(8)

式中 为谐振频率。

由式(7)可知,对直流系统而言,由于积分环节的存在,0 Hz处的增益极高,从而系统可以实现无静差调节;对于交流系统,50Hz及其倍数次谐波,式(7)增益有限,式(8)由于谐振环节的引入,在相应频段有较高的增益。若跟踪的目标为基波 rad/s;若需补偿较高幅值的5次谐波,则有 rad/s。通常补偿谐波次数最高至20或50次,尤其是幅值较高的奇次谐波。因此有,

(9)

图4所示为基波及三、五、七次谐波补偿用PR谐振控制器波特图,可以看出在相应频段电流控制器增益较高,有助于减小跟踪误差。

图4 ?PR谐振控制器波特图

**Fig. 4 **PR controller bode plots

仿真及实验验证

为验证所提出的谐波、负序及无功电流复合补偿策略,本文在Matlab Simulink环境下建立仿真平台。相关参数设置如下:输入三相四线制电压380V/50Hz,三相二极管整流器非线性负载直流侧滤波电感1mH,电阻3.2Ω,三相二极管整流器交流电抗0.4mH,APF-STATCOM并网电抗0.4mH,直流侧支撑电容4000μF,交流侧不平衡RL负载星型联接,电感值均为8mH,电阻值分别为5Ω,50Ω,500Ω,开关频率10kHz。

图5所示以A相为例,表明补偿后APF-STATCOM注入电流很好地抵消了负载电流的谐波电流,使得电网电流正弦化较好,实现了APF谐波补偿功能;同时电网电流与电网电压同频同相,功率因数接近于1,实现了STATCOM无功补偿功能。图6给出三相补偿结果,对称三相电流波形验证其具有较好抑制不平衡负载能力。

图5 A相补偿后电压电流波形(从上到下依次是电网电压/V、电网电流/A、补偿电流/A、负载电流/A,时间轴 t/ s)

Fig. 5 Phase A wave forms after compensation

图6 补偿后电网三相电压电流波形(从上到下依次是三相电网电压/V、三相电网电流/A,时间轴 t /s)

Fig. 6 Three phase wave forms after compensation

图7进一步给出直流侧母线电压波形,可以看出APF-STATCOM在完成谐波补偿后,母线电压略有波动,但稳定在750V设定值附近。

图7 直流侧母线电压/V(时间轴t/s)

Fig. 7 Dc link bus voltage

图8及图9进一步给出工业样机内部测试结果,受实验条件限制,此时负载仅为整流性非线性负载,故负载电流及补偿电流与仿真有所区别,其主要体现了APF补偿功能。图10给出产品在现场投运结果,与图1相比,中性线电流由37A减小至5A,三相电流THD最大不超过3.4%,且对称性较好,充分验证了APF-STATCOM复合补偿功能。

图8 A相及B相补偿后网侧电流及负载电流(从上到下依次是A相电压、B相电流、A相负载电流、B相负载电流)

Fig. 9 Phase A &B grid & load current after compensation

图9 A相补偿后网侧电流、发出反向谐波电流及负载电流

Fig. 9 Phase A grid, inverse harmonic current & load current after compensation

图10 实际现场APF-STATCOM补偿后结果

Fig. 10 APF-STATCOM Compensation effects in practice

结论语

基于电能质量复合控制思想,针对智能配电网中谐波电流、负载不平衡、功率因数较低问题,提出一种谐波、负序及无功电流复合补偿策略。

仿真、工程样机试验及现场运行结果验证了基于该策略所实现的APF-STATCOM复合补偿功能。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 谐波
    +关注

    关注

    7

    文章

    924

    浏览量

    43819
  • 无功补偿
    +关注

    关注

    12

    文章

    591

    浏览量

    23918
  • 智能配电网
    +关注

    关注

    1

    文章

    48

    浏览量

    5721
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    电能质量在线监测装置电流不平衡度能测吗?

    61000-4-30 等国家标准要求,为三相系统运行状态评估提供关键数据。 一、电流不平衡度的测量原理与核心指标 1. 测量原理(专业且易懂) 装置采用 对称分量法 (电力行业标准方法),通过实时采集
    的头像 发表于 11-27 15:50 649次阅读
    电能质量在线监测装置<b class='flag-5'>电流</b><b class='flag-5'>不平衡</b>度能测吗?

    电能质量在线监测装置三相不平衡度实时显吗?

    一、三相不平衡度显示能力确认 所有现代电能质量在线监测装置 (无论 A/B/C 类精度) 均 标配三相不平衡度实时监测功能 ,具体表现为: 显示形式 :液晶屏幕 (LCD/TFT) 直
    的头像 发表于 11-25 17:48 357次阅读
    电能质量在线监测装置<b class='flag-5'>三相</b><b class='flag-5'>不平衡</b>度实时显吗?

    安全与寿命的博弈,SG三相隔离变压器如何为关键设备“续命”?

    开篇:在一些老旧厂房或三相负载不平衡的场合,您是否测量过零线(中性线)上那令人不安的电流?它不仅导致线路额外发热、增加能耗,更可能对设备的安全绝缘构成长期威胁。这种由
    的头像 发表于 11-22 11:19 365次阅读
    安全与寿命的博弈,SG<b class='flag-5'>三相</b>隔离变压器如何为关键设备“续命”?

    电流不平衡度的测量误差范围是多少?

    19862-2016 电能质量监测设备通用要求》,电流不平衡度测量精度分为两级: A 级(高精度装置) 误差范围 :≤±0.5%(如实际不平衡度为 5% 时,测量值在 4.5%~5.5% 之间)。 适用场景 :
    的头像 发表于 11-06 09:38 526次阅读

    电流不平衡度测量精度受谐波影响吗?

    是的,电流不平衡度的测量精度 会显著受谐波影响 。这是因为电流不平衡度基于 “对称分量法” 计算(分解正序、负序、零序分量),而
    的头像 发表于 11-05 16:08 950次阅读

    电能质量在线监测装置三相不平衡度能实时算吗?

    的实时分解 三相不平衡度的计算基于对称分量法,通过将三相电压 / 电流分解为正序、负序和零序分量实现。具体步骤包括: 基波提取 :采用快速傅里叶变换(FFT)或数字锁相环(PLL)分离
    的头像 发表于 10-15 16:22 187次阅读

    三相不平衡度的国标是怎样规定电能质量在线监测装置的监测精度的?

    根据现行国家标准 GB/T 15543-2008《电能质量 三相电压不平衡》 及相关配套规范(如 GB/T 19862-2016《电能质量监测设备通用要求》 ),电能质量在线监测装置对三相不平
    的头像 发表于 10-11 16:31 941次阅读
    <b class='flag-5'>三相</b><b class='flag-5'>不平衡</b>度的国标是怎样规定电能质量在线监测装置的监测精度的?

    变频器输出不平衡及对策

    、变频器输出不平衡的表现及危害 变频器输出不平衡主要表现为三相输出电压或电流幅值不一致、相位不对称等现象。具体症状包括: 1. 电机运行抖动、噪音异常增大。 2. 电机温升过高,绝缘老
    的头像 发表于 08-23 17:09 1482次阅读
    变频器输出<b class='flag-5'>不平衡</b>及对策

    无轴承异步电机的不平衡振动补偿控制

    ;最后利用Matlab/Simulink对无轴承异步电机不平衡振动控制系统进行了仿真研究和分析。仿真结果表明:与不进行振动控制时相比,采用本文给出的不平衡振动补偿
    发表于 07-14 17:37

    三相四线变换器拓扑与原理简介

    蓬勃发展,其中离网应用场景下,不平衡负载的带载能力、谐波畸变度等都是其PCS的重要指标。SiCMOSFET结合三相四桥臂变换器在此应用场景具有明显的应用优势,本文上篇将
    的头像 发表于 07-07 18:47 2279次阅读
    <b class='flag-5'>三相</b>四线变换器拓扑与原理简介

    轮毂电机不平衡电磁力对车轮定位参数的影响

    [摘要] 轮毂电机驱动电动汽车将电机、减速机构和制动器等高度集成于车轮内。不同路面激励下的轮胎跳动、载荷不均和轴承磨损等造成电机气隙沿圆周分布不均,其所产生的不平衡电磁力将会通过减速机构或直接传递
    发表于 06-10 13:17

    伺服电机三相不平衡原因及解决方法

    伺服电机作为现代工业自动化系统中的核心执行元件,其稳定运行直接关系到生产效率和设备寿命。然而在实际应用中,三相电流不平衡问题频发,轻则导致电机发热、效率下降,重则引发设备停机甚至绕组烧毁。本文将
    的头像 发表于 05-06 07:40 1361次阅读
    伺服电机<b class='flag-5'>三相</b><b class='flag-5'>不平衡</b>原因及解决方法

    中频炉电弧炉无功补偿谐波治理

    时,电弧炉三相负载不对称所造成的电网电压的不对称性未超过国标《电能质量˙三相电压允许不平衡度》(GB/T15543—1995)中规定的允许值
    发表于 03-31 11:23

    三相负载箱与单相负载箱的区别与优势对比

    箱:能够提供更大的功率和更强的负载能力,适用于大型工业设备和电动机等高功率需求场景。 单相负载箱:功率相对较小,更适用于轻负载和小型设备。 稳定性: 三相
    发表于 02-08 13:00

    平衡电阻器可以改为不平衡

    在电子电路中,平衡电阻器与不平衡电阻器各自扮演着重要的角色。平衡电阻器主要用于实现电路的平衡和稳定性,减少噪音和干扰,提高信号质量。而不平衡
    的头像 发表于 01-30 14:31 1735次阅读