0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

同步降压转换器中的输入和输出电容考量因素

星星科技指导员 来源:TI 作者:TI 2023-04-08 09:12 次阅读

电容对于同步降压转换器而言,是个至关重要的组件。由于有着各种各样的电容技术,因此,如图1所示,在设计同步降压转换器时需考虑输入和输出电容的参数

poYBAGQwv3KAGEqBAABImWKsWRY997.png

图1:同步降压直流/直流转换器

电力电容的选择参数如下文表1所示:

降压转换器性能特性 需考虑的电容参数
功耗 有效串联电阻(ESR)
电压纹波性能 有效串联电阻(ESR)
负载瞬态(交流)性能 有效串联电感(ESR)
有效串联电阻(ESR)
电容
成本 视技术和供应商而定
尺寸 长、宽、高
可靠性 电容材料

表1:降压转换器性能 vs. 电容参数

下文表2所示为各类技术相关的电容特性。

电容技术 ESR 成本 电流额定值
标准铝电解电容
OSCON电容
POSCAP电容
钽质电容
陶瓷电容 非常低 非常高

表2:相关电容特性

电容阻抗与频率的比值也非常重要,因为它决定了降压转换器将电容作为储能容器而非感应器的开关频率。阻抗可受电容的ESR(有效串联电阻)和ESL(有效串联电感)影响,且看起来像一个U形曲线,如图2所示。图2中所示的自谐振频率是电容开始用作感应器的频率(示例为10uF电容)。理想状态下,我们希望降压转换器以电容区域的开关频率进行开关操作。

我们可以使用电容组合使阻抗曲线“变平”,以在推高降压转换器的开关频率的同时,使其仍处于电容区域内。电容阻抗因技术和开关频率而异。

pYYBAGQwv3KAc3V2AACjlbrG968917.JPG

图2:电容阻抗与开关频率之比

那么,如何选择输入和输出滤波器选择电容呢?

对于输入滤波器,你需要选择一个电容来处理输入交流电流(纹波)和输入电压纹波。

对于输出滤波器,你需要选择一个电容来处理负载瞬态,并将输出电压纹波降至最低。

图3所示方程为确定电容可以承受的输入电流RMS(均方根)电流。根据输入电压、输入电流RMS电流,以及输入电压峰-峰纹波,您可以根据电容数据表选择电容。建议将铝电解电容(AlEl)和陶瓷电容结合使用。陶瓷电容的ESR较低,且能够降低输入电压峰-峰纹波,这反过来又能够减少输入大电容所需处理的输入纹波电流。

poYBAGQwv3OAN3EDAACI-AH-Jhg368.png

图3:输入电容RMS电流的计算

下文表3所示为输出电容的选择标准:

电容参数 负载瞬态性能 输出电压纹波
大电容(用于储能和将能量向负载侧传递) 主要作用 主要作用
ESR 主要作用 主要作用
ESL 主要作用 次要作用

表3:输出电容的标准

下文图4所示为每个输出电容元件对降压转换器负载瞬态性能的作用机制

pYYBAGQwx8aALCDOAAB5RcHKTL0968.png

图4:电容的负载瞬态性能标准

如下文图5-6所示,电容的输出电压过冲、下冲和峰-峰电压纹波计算值可用于确定电容。

pYYBAGQwv3SAXcRXAABP-Du0c48520.png

图5:确定输出电压下冲和过冲用输出电容

poYBAGQwv3SABSu4AAAI4DDWHuU402.png

图6:确定输出电压峰-峰纹波处理用输出电容

以下所示为输出电容的一个选择示例:

输出电容

2A~10A负载阶跃 @ 15A/ms

使用2x 1000 mF铝质电解电容器:19mW ESR

PLOSS = (3.32/2)2x 19/2 x 10-3= 0.024W]

为了帮助降低尖峰,加入两个10 mF陶瓷电容器(1210),分别为0.8mW ESR、1.1nH ESL

该选择方案能够提供:

1.7mV输出电压下冲

10.7mV输出电压上冲

19.9mV电压尖峰

2.8mV输出电压峰-峰纹波

所以,设计降压转换器时,记住这些电容选择标准,您就可以设计出高性能、稳定且可靠的解决方案了。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电容器
    +关注

    关注

    63

    文章

    5815

    浏览量

    96786
  • 转换器
    +关注

    关注

    27

    文章

    8210

    浏览量

    141908
  • 滤波器
    +关注

    关注

    158

    文章

    7333

    浏览量

    174813
收藏 人收藏

    评论

    相关推荐

    设计同步降压转换器时需考虑输入输出电容的参数

    电容对于同步降压转换器而言,是个至关重要的组件。由于有着各种各样的电容技术,因此,如图1所示,在设计同步
    发表于 04-18 13:36

    如何选择输出段元件最大化DC-DC同步降压转换器性能

    。  LC输出段  同步降压转换器输出段由电感及电容组成。它储存及为负载提供能量,使开关节点电
    发表于 09-30 16:04

    10V-15V输入电压1.2V 3.8A输出电压的同步降压转换器

    描述PMP5730 是一种同步降压转换器,提供 10V - 15V 的输入电压范围。仅使用陶瓷输出电容
    发表于 11-22 17:01

    AC/DC非隔离型降压转换器的设计案例概要

    连续模式和续模式电源IC的选择和设计案例主要元器件的选型输入电容器:输入电容器C1与VCC用电容器C2电感L1电流检测电阻R1
    发表于 11-27 17:04

    降压转换器的基本工作

    基本工作和电流路径的说明开始。降压转换器的基本工作以下是降压转换器的基本电路和工作,以及电流的流向。Fig. 1表示开关元件Q1为ON的状态。Q1为ON时,电流将从
    发表于 12-05 10:06

    高效率72W功率输出的非同步降压升压转换器

    描述PMP7988 是一种非同步降压升压转换器。此设计接受 8Vin 至 16Vin 输入电压(标称输入电压为 12V),可实现 12V
    发表于 12-17 15:34

    同步降压转换器设计输入输出电容参数的考虑

    电容对于同步降压转换器而言,是个至关重要的组件。由于有着各种各样的电容技术,因此,如图1所示,在设计同步
    发表于 03-06 06:45

    反向降压-升压转换器布局方式概述

    CIN、控制FET QH和同步整流QL。输出电流回路中元件包括同步整流QL、滤波电感L1及
    发表于 08-12 04:45

    具有扩展的输入输出范围的固定频率同步降压升压转换器

    演示电路DC1598A是一款固定频率同步降压 - 升压转换器,具有扩展的输入输出范围。独特的4开关单电感架构可在高于,低于或等于
    发表于 08-10 09:40

    采用降压-升压配置的非同步降压转换器参考设计

    描述PMP10680 参考设计是一款采用降压-升压配置的非同步降压转换器。PMP10680 接受 4.5 至 24Vin 输入电压,提供 -
    发表于 09-22 07:57

    同步降压转换器输入输出电容考量因素

    图1:同步降压直流/直流转换器 电力电容的选择参数如下文表1所示: 降压转换器性能特性需考虑的
    发表于 11-14 06:55

    反向降压-升压转换器的布局

    降压转换器和反向降压-升压转换器开关并流的差异。在降压转换器(图1a和1b)
    发表于 11-15 06:00

    设计同步降压转换器时需考虑输入输出电容的参数

    电容对于同步降压转换器而言,是个至关重要的组件。由于有着各种各样的电容技术,因此,如图1所示,在设计同步
    的头像 发表于 12-20 14:46 1208次阅读
    设计<b class='flag-5'>同步</b><b class='flag-5'>降压</b><b class='flag-5'>转换器</b>时需考虑<b class='flag-5'>输入</b>和<b class='flag-5'>输出</b><b class='flag-5'>电容</b>的参数

    12V输入、3W、双路5V输出同步降压转换器设计

    电子发烧友网站提供《12V输入、3W、双路5V输出同步降压转换器设计.zip》资料免费下载
    发表于 09-05 17:25 2次下载
    12V<b class='flag-5'>输入</b>、3W、双路5V<b class='flag-5'>输出</b><b class='flag-5'>同步</b><b class='flag-5'>降压</b><b class='flag-5'>转换器</b>设计

    同步降压转换器中的输入输出电容考量因素

    同步降压转换器中的输入输出电容考量
    发表于 11-02 08:16 0次下载
    <b class='flag-5'>同步</b><b class='flag-5'>降压</b><b class='flag-5'>转换器</b>中的<b class='flag-5'>输入</b>和<b class='flag-5'>输出</b><b class='flag-5'>电容</b><b class='flag-5'>考量</b><b class='flag-5'>因素</b>