0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

不同添加剂(FEC、VC、CEC)电解液对电池性能影响!

锂电联盟会长 来源:锂电联盟会长 2023-03-29 10:55 次阅读

电解液一般由碳酸酯类有机溶剂和电解质锂盐(如LiPF6)组成,可添加一定量的添加剂(如FEC、VC和CEC等)。添加剂的主要作用有:

①改善SEI膜的性能,在SEI膜形成时消耗部分Li+,使首次充放电不可逆容量增加,且限制溶剂分子通过SEI膜;②降低电解液中极少量的水和HF酸的含量;③防止过充电、过放电。正常充放电下,添加剂不参与任何化学或电化学反应;当电池充满电或电压高于工作电压3V以上时,添加剂在正极被氧化,扩散到负极发生还原反应,从而防止过充电、过放电。

本文作者对扣式锂离子电池进行充放电性能测试,通过分析不同EC基电解液添加剂比例下电池的放电比容量、首次库仑效率、循环稳定性等,探究EC基电解液添加剂对Si-C负极体系性能的影响。

1 实验

1.1 电解液制备

使用的基础电解液为1801型电解液(EC、DMC、DEC、FEC和VC的体积比为0.33∶0.33∶0.33∶0.05∶0.05),溶质为LiPF6(约含12.5%)。在(24±3)℃下将EC基电解液与FEC、VC、CEC等添加剂按表1配制成实验电解液。

表1 不同实验电解液的添加剂体积分数

1.2 极片和电池制备

将纳米硅合金负极材料、石墨、 导电炭黑SP、 海藻酸钠、羧甲基纤维素钠按质量比4.0∶4.0∶1.0∶0.4∶0.6混合成总质量约2g的粉末,搅拌均匀后,干燥8h,加入5~7ml去离子水,搅拌3min,加入0.1ml丁苯橡胶SBR,搅拌2h。将浆料涂覆在8μm厚的铜箔上,厚度约为140μm,然后将极片放入鼓风干燥箱中,在80℃下干燥20min,以50MPa的压力压片后,裁切成直径为14mm的极片,在120℃下真空干燥8h。以该极片为负极,高纯锂片为正极,CelgardA273为隔膜,在氩气保护的手套箱内组装CR2032型扣式电池。按照电解液编号对电池进行编号。

1.3 性能测试

扣式电池组装之后,在40℃下放置4h,用CT2001A电池测试系统进行性能测试,电压为2.5V,电流为190~300mA(具体数值根据负极片的称重计算)。

2 结果与讨论

2.1 CEC添加量的影响

高纯度CEC可以直接作为锂离子电池电解液的阻燃添加剂,改善电解液的循环性能,延长使用寿命。 测试CEC添加量对电池性能的影响,结果如图1所示。

图1 不同CEC添加量电池的放电比容量和库仑效率

从图1可知,随着CEC添加量的增加,电池的放电比容量增加,库仑效率略微下降。1-1电池的首次放电比容量为488.75mAh/g,而1-2电池的首次放电比容量为449.98mAh/g;1-1、1-2电池的首次库仑效率分别为90.05%、90.70%。由此可见,CEC的添加量会直接影响扣式电池的充电比容量,当添加量为3%时,电池首次放电比容量比添加量为1%时高出近40mAh/g;但首次库仑效率相差不超过1%,说明影响较小,且首次库仑效率均在90%以上,性能满足要求。实验结果表明:当CEC的添加量为3%时,对电池性能有较好的提升效果。

2.2 FEC添加量的影响

FEC作为电解液添加剂,形成的SEI膜性能更好,结构紧密又不增加阻抗,能阻止电解液进一步分解,提高电解液的低温性能。测试不同FEC添加量电池的性能,放电比容量和库仑效率如图2所示。

图2 不同FEC添加量电池的放电比容量及库仑效率

从图2可知,随着FEC添加量的增加,电池的首次库仑效率和放电比容量明显降低。2-1电池的首次放电比容量为482.54mAh/g,首次循环库仑效率为91.03%;而2-2电池的首次放电比容量低于450.00mAh/g,首次循环效率低于90.00%,此时电池性能不稳定且明显下降,与1-1、2-1电池相差甚远,原因是形成的SEI膜过于致密,损耗过量Li+,且剩余的Li+无法自由通过SEI膜进行嵌脱,导致比容量下降,首次库仑效率下降。由此可知,FEC添加量不宜超过3%。

FEC的分解电压为1.20~1.24V,高于EC的0.64V,可在Si-C电极表面优先分解,形成薄且韧性好的SEI膜,提高Si-C材料的电化学性能。石墨负极与Si-C负极的电化学性能不同,应使用不同组分的电解液。目前市场上适用于Si-C负极的电解液与石墨负极的电解液组分的差别,主要是FEC用量的不同。从以上实验结果可知,在电解液中单纯调整FEC的添加量,可能达不到较好的效果,需要将FEC与其他电解液添加剂组合使用,才可能获得较理想的Si-C负极材料电解液。

2.3 VC添加量的影响

VC会在锂离子电池负极表面发生聚合反应,形成一层致密的SEI膜,阻止电解液在负极表面发生进一步的还原分解。测试不同VC添加量电池的性能,放电比容量及库仑效率如图3所示。

图3 不同VC添加量电池的放电比容量及库仑效率

从图3可知,随着VC添加量的增加,电池的放电比容量下降,且越来越不稳定。3-1、3-2和3-3电池的首次库仑效率分别为89.2%、92.15%和88.55%。3-1电池的首次放电比容量及首次库仑效率虽然均比3-2、3-3电池低,但是从循环50次的结果来看,循环稳定性较好;3-3电池的比容量经过7~8次循环即出现较大波动,循环性能不稳定;而3-2电池也在32次循环后出现波动。虽然VC添加量为2%时的电池首次库仑效率较高,但综合而言,VC添加量为1%时的电池综合性能较好,内阻较低、容量保持率较高。

含VC添加剂的电解液所形成的SEI膜可提高中间相碳微球(MCMB)/Li电池的比容量及循环稳定性。含VC添加剂的电解液在石墨电极表面形成的SEI膜形成得更加完全,颗粒之间有明显的膜覆盖。从以上实验结果可知,VC添加量不宜过多,在石墨负极电解液基础上,单独使用VC也不能得到理想的Si-C负极电解液。

2.4 综合实验

通过对比以上实验数据,选择各组最优比例见表2。

表2 各组最优比例性能对比

从表2可知,CEC的添加对电池首次放电比容量影响较大;FEC的添加可将首次库仑效率提升到91%以上,故FEC的添加作用明显;添加VC后,虽然首次充电比容量及首次库仑效率均低于前两者,但容量保持率比前两者高出约4%,说明对维持电池循环稳定性有积极作用。实验结果表明,电解液对此负极材料各项性能的影响虽有明显改善,但未达到理想水平。选择各组电解液中性能较好的1-1、2-1和3-1号的比例,进行综合实验,选择FEC添加量为3%,VC添加量为1%,CEC添加量为3%制备电解液,装配扣式电池(即4-1电池)。4-1电池的放电比容量及库仑效率如图4所示。

图4 添加量最优比例电池的放电比容量及库仑效率

从图4可知,改进后电池的首次库仑效率达到91.90%。经过4次循环,库仑效率已接近100%。负极材料的首次放电比容量为452.60mAh/g,虽低于1-1、2-1电池,但经过150次循环后,比容量保持较为平稳;后期略有升高,可能是因为半电池Si-C负极涂覆较厚,在前期的充放电过程中未能充分地嵌脱锂,经过几十次循环后才能深入地嵌脱锂,Li+在进入硅晶格的过程中,导致硅颗粒粉化为原子态,且随着循环次数增加而增多,比表面积增加,故在后期循环中整体容量会升高。电池的整体的容量保持率能达到86.50%。

3 结论

选择CEC、FEC和VC等3种电解液添加剂的合适比例,会提高电池的首次充电比容量、首次库仑效率和循环稳定性。确定合适的添加体积分数为:3%FEC、1%VC和3%CEC,此时电池综合性能表现最优。此条件下,电池的首次放电比容量达452.60mAh/g,比传统纯石墨负极的充电比容量(350mAh/g)高出约25%。改进后的Si-C负极,对提高锂离子电池的循环稳定性有积极的作用,在很大程度上克服了硅负极材料的衰减问题,第150次循环的容量保持率可达到86.50%。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3090

    浏览量

    76498
  • 电流
    +关注

    关注

    40

    文章

    6000

    浏览量

    129911
  • 电解液
    +关注

    关注

    10

    文章

    792

    浏览量

    22721

原文标题:不同添加剂(FEC、VC、CEC)电解液对电池性能影响!

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    基于锑负极实现新的醚基电解液的设计

    电解液添加剂能够有效提高锂离子电池性能。目前,研究人员对添加剂(例如成膜剂)作用的认知有较大转变,不仅会考虑
    的头像 发表于 11-28 10:20 1823次阅读
    基于锑负极实现新的醚基<b class='flag-5'>电解液</b>的设计

    手机“添加剂”需规范

    微妙又含糊。  这一“定位门”事件,似乎可算是IT消费界的食品安全事件。涉嫌的种种内置程序,犹如食品中的种种不良添加剂。它们未必能致病致命,却隐隐地损害健康、暗暗地损害消费者权益。所以,对此不可不
    发表于 05-04 17:11

    锂离子电池电解液有机溶剂的发展趋势

    ,在溶剂的综合性能上超越碳酸酯;更为简便的方法是在碳酸酯类溶剂的基础上,加入不同类型的添加剂,弥补碳酸酯类溶剂的不足,或提高液体电解质的综合性能,或获得某一方面的特性,以满足锂离子
    发表于 06-17 10:55

    电解液电容器老化电压与电解液火花电压的关系

    有关铝电解电容器的老化电压与电解液的关系,1、高压规格电容器老化电压可以高出电解液火花电压吗?可以高出多少?2、电解液的火花电压在电容器内密闭状态下,
    发表于 12-30 16:23

    锂离子电池电解液超全面介绍 有何神秘之处?

    添加剂、阻燃添加剂、过充保护添加剂、控制电解液中H2O和HF含量的添加剂、改善低温性能
    发表于 02-22 11:59

    电解液——锂电池的‘血液’

    研制中主要挑战“电解液被喻为锂电池的‘血液’,担负电池充放电过程离子输运任务,具有不可替代的作用。其一般由高纯度有机溶剂、电解质锂盐(六氟磷酸锂等)、
    发表于 08-07 18:47

    现在的锂电池都是用什么样的电解液电解液里加入什么添加剂

    现在的锂电池都是用什么样的电解液电解液里加入什么添加剂? 一般都是三组份的有机溶剂加盐LiPF6。电解液主要是一些有机物液体,比如PC(
    发表于 10-23 08:34 4740次阅读

    最近10年铅酸电池添加剂研究概况

    摘要:总结了近10年来铅酸蓄电池所用添加剂的研究概况,并从正极添加剂电解液添加剂和负极添加剂
    发表于 02-22 13:25 34次下载

    高压锂离子电池电解液添加剂的研究及相关的六大种类介绍

    含硼化合物经常作为添加剂应用到不同正极材料的锂离子电池中,在电池循环过程中,很多含硼化合物会在正极表面形成保护膜,来稳定电极/电解液之间的界面,从而提高
    发表于 09-27 08:48 18次下载
    高压锂离子<b class='flag-5'>电池</b><b class='flag-5'>电解液</b><b class='flag-5'>添加剂</b>的研究及相关的六大种类介绍

    这几款电解液为高压锂离子电池发展带来新生机

    普通锂离子池电解液在高电压下的氧化分解限制了高压锂离子电池的发展,为了解决这一问题,需要设计、合成新型的耐高压电解液或寻找合适的电解液添加剂
    发表于 11-10 11:12 0次下载
    这几款<b class='flag-5'>电解液</b>为高压锂离子<b class='flag-5'>电池</b>发展带来新生机

    新宙邦研发新型正极成膜添加剂 改善FEC在高镍电池体系出现的问题

    在此背景下,新宙邦公司自主开发了新型正极成膜添加剂LDY196,其能明显抑制电解液在高镍正极和高压NMC正极上的氧化分解,从而能有效改善高含量FEC电解液在高镍或高电压NMC
    的头像 发表于 12-28 15:16 8641次阅读

    高压锂离子电池电解液添加剂详解及应用举例

    传统使用的有机碳酸酯类电解液在高电压下持续的氧化分解以及正极材料过渡金属离子的溶解问题,限制了高压正极材料的容量发挥和应用,发展高压电解液添加剂是改善电池
    的头像 发表于 03-02 17:14 1.4w次阅读

    阿科玛新型电解液添加剂LiTDI能提升电池寿命

    据外媒报道,阿科玛(Arkema)公司推出的新型电解液添加剂LiTDI,不仅能延长电池寿命,加快充电速度,对于电动汽车必需的高容量电池材料,还解决了材料纯度和稳定性问题。
    的头像 发表于 04-10 17:09 2750次阅读

    电解液保供后发生了哪些事?

    要说今年动力电池产能释放的掣肘,风暴的核心无疑是电解液及其原材料六氟磷酸锂、VC添加剂等。
    的头像 发表于 07-04 14:17 1880次阅读

    分析不同电解液体系对电池产气行为及产气成分的影响

    电解液是锂离子电池四大主材之一,有锂离子电池的“血液”之称,电解液主要由有机溶剂、电解质锂盐及不同类型的
    发表于 10-31 14:26 1713次阅读