0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

科学设计锂电电极的客观规律介绍

锂电联盟会长 来源:Zeyu Hui 2023-03-28 15:35 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

改变电极的孔隙率和活性物质的负载量,同时采用放电试验对参数进行优化和验证,可以实现锂离子电池能量密度的最大化,从而优化基于物理学的电池多尺度模型。

尽管,电极和活性物质颗粒尺度对能量传输有一定损耗,但电极的最优尺度与其小尺度特性并无关系。电极的特性,如曲率、电解质浓度和锂离子扩散系数,都会影响电极的最佳尺度设计。

可以对其间的相关性进行归纳总结为一种普适性的关系

孔隙率ε=0.13 log10(kεGrτ/(FDoc0))

面密度Qa= kQ/9e07f274-cd36-11ed-bfe3-dac502259ad0.png

这一准则对电极结构的优化具有指导作用。

【研究背景】

锂离子电池由于其能量密度高、功率密度大以及很好的循环寿命,已被广泛地应用在不同的领域。特别是电动汽车,其对锂离子电池提出了更高能量密度、低生产成本和长行驶里程的要求。传输阻抗对提高锂离子电池的能量密度至关重要。

离子传输阻抗可能在多孔电池电极内的不同长度尺度上发生,例如LixNi1/3Mn1/3Co1/3O2(NMC111)电极 (如图1)。在电池运行充放电过程中,电解液中的锂离子扩散不仅要通过多孔电极,而且需要通过由晶体形成的二次聚合物。同时,嵌入的锂还必须从晶体的表面扩散到晶体内部。很难确定这两种离子传输类型中哪一种对电池的影响更大。

因此,通过在电极尺度获得最小的离子迁移阻抗,从而设计最优的电池电极,可能是一种提高电池能量密度更为直接、有效的方法。

9e1200e8-cd36-11ed-bfe3-dac502259ad0.png

图 1. 锂离子在不同长度NMC111电极上的传输示意图。

基于此,哥伦比亚大学的Alan C. West教授等人,建立了一个物理实验模型,并用实验结果对其进行验证。随后,使用验证后的物理模型对电池电极进行参数优化,并证实了锂离子在聚合物和晶体上的传输特性对电极优化参数没有影响。最后,证实了最优的电极设计参数确实具有普适性的关系

必须指出的是,虽然电池循环稳定性因素在该项研究没有考虑,但其在后续研究中,能否获得电池的性能衰减机理是至关重要的。

【研究理论与方法】

如图2a,在一定的电流下为了获得最大的电池体积能量密度,两个方面的因素需要考虑:当增加活性物质负载量或降低电极孔隙率时,电池体积会减小,从而提高电池的体积能量密度,但其降低离子的传输速率,反而导致低的电极材料利用率。

相反地,使用薄且多孔的电极有利于提高电极的利用率,但由于集流体和电池隔膜的厚度是一定的,此种设计方法也会导致体积能量密度的降低,因电池绝大部分的体积被惰性成分占据。

因此,在提高电极利用率和增加活性物质负载量之间,找到一个合适的平衡比例对优化电池的体积能量密度是非常关键的

9e329916-cd36-11ed-bfe3-dac502259ad0.png

图 2. (a) 电极关键设计参数、活性物质负载量和孔隙率的示意图。(b) 不同放电倍率下的最优体积能量密度。(c-d) 获得最高体积能量密度时的最优电极孔隙率和负载量。

如图2b-d所示,以LixNi1/3Co1/3O2(NMC111)为例,除了活性物质外,电极中还含有其他惰性物质,如粘结剂等。此类物质并不具有储锂能力,对电池能量没有贡献,因此,在保证电极稳定的机械性能的前提下,应尽可能地使活性物质的比例最大化,例如粘结剂等惰性物质的体积分数应略大于渗流阈值。另外,尽管电极的电子电导率是有限的,但对于所有的电池来说,电导率越大,电阻越小,电池性能越好。

因此,最佳的电极设计主要取决于电极的孔隙率(电导率决定性因素)和活性物质的负载量。图2b给出了体积能量密度与电流之间的关系,其对应的最佳负载量和电极孔隙率如图2c和2b所示。从图中可以得出,如果要获得一个在电流为1/h下工作的NMC111电极,当孔隙率为0.26且负载量为38 mg/cm2时,电池的体积能量密度最大。

由于增加孔隙率和惰性成分比例,或增加孔隙率、减小负载量,会降低电池的体积能量密度,而由于材料利用率低(每克活性物质所放出的电量),即使降低孔隙率或增加负载量,也会导致电池体积能量密度的降低。图2c显示,最佳活性物质负载量随电流增加而降低,表明电极在具有更高的孔隙率的同时也应该更薄,才能保持活性物质良好的利用率。

【实验结果】

图3给出了最优体积能量密度、最佳ε值和负载量与团聚尺寸和扩散系数的函数关系:最优体积能量密度随着扩散系数的增加或者团聚尺寸的减少而增加。团聚尺寸对体积能量密度的影响,比扩散系数的影响更大。

9e4b70d0-cd36-11ed-bfe3-dac502259ad0.png

图 3.(a)最优体积能量密度与不同活性物质团聚尺寸和扩散系数的关系。(b-c) 最佳ε值和负载量与团聚尺寸和扩散系数的函数关系。

图4a, 4c表明最佳孔隙率与负载量遵循Bruggeman关系

在极端情况下,曲率度是所有孔隙度的总和。随着曲率的增加,电解质的有效扩散系数降低,这会导致更大的最佳孔隙率和更低的最佳负载量,从而保证了良好的电极利用率。图4b, 4d表明当电流放大τ倍时,最佳ε值和负载量与电流呈线性关系。

9e56ff86-cd36-11ed-bfe3-dac502259ad0.png

图 4. (a, c)最优电极参数与电极曲率的关系。(b, d) 最佳ε和负载量与电流放大倍数的关系。

图5a, 5c 表明降低电解质扩散系数或电解液浓度,会导致最佳孔隙率的增加或最优负载量的降低

图5b, 5d显示出Cr与1/(FDoc0)之间的关系。

9e753550-cd36-11ed-bfe3-dac502259ad0.png

图 5. 最佳电极参数与电解质之间的关系,(a, c) 最佳参数与电解液扩散系数和浓度, (b, d) 最佳ε值和负载量与Grτ/(FDoc0)之间的关系。

【实验讨论】

研究人员将提出的电极普适性设计原则应用到NMC、LVO、FEO和VOPO4四种不同的电极材料设计上,如图6所示。根据优化设计的结果显示,图7显示,采用计算的最优参数可以获得95%的理论最大体积能量密度。表明,所提出设计原则具有普适性,并且与活性物质无关。图8表明所计算的最佳ε值与最佳容量负载值(虚线)与数值优化后的结果(实现)非常吻合。特别是在95%灵敏度条件下。

9ea42806-cd36-11ed-bfe3-dac502259ad0.png

图 6. 不同电极材料的SEM图片和放电曲线。

9ebb5e90-cd36-11ed-bfe3-dac502259ad0.png

图 7. 对四种不同电极材料进行优化所获得的结果。

9ec83a48-cd36-11ed-bfe3-dac502259ad0.png

图 8.模拟的最优设计结果与Cr之间的函数关系。

图9表明所提出的最佳负载量Qa与已报到的研究结果基本一致,即使控制参数稍有不同,也与报道的研究结果基本一致。并且所提出的普适性关系也适用于NMC622和LFP电极体系。

9ee7f11c-cd36-11ed-bfe3-dac502259ad0.png

图 9. 最佳面积负载Qa的设计结果与其他研究结果的比较图。

总之,虽然锂离子电池是一个非常复杂且多尺度的系统,其性能受不同尺度的离子传输阻抗的影响。该工作所开发的基于多尺度的物理模型,揭示了电池电极尺度离子传输的最优值与材料微观尺度上的独立性。

考虑到电解液的扩散率、浓度以及电极曲率,将广义电极优化应用于不同活性物质的锂电池电极,从而获得了电池性能与各个参数之间的普适性关系。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    156

    文章

    12550

    浏览量

    236235
  • 锂离子电池
    +关注

    关注

    85

    文章

    3529

    浏览量

    80227
  • 电解质
    +关注

    关注

    6

    文章

    827

    浏览量

    21236
  • 电池电极
    +关注

    关注

    0

    文章

    10

    浏览量

    5810

原文标题:科学设计锂电电极的客观规律

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    船用氯化银参比电极,法兰对接式氯化银参比电极,固态参比电极

    电极
    jf_14142521
    发布于 :2025年12月04日 18:30:29

    氯化银参比电极 ,阴极保护检测系统,海水用固态氯化银参比电极

    电极
    jf_14142521
    发布于 :2025年11月04日 18:52:48

    锂电池制造的关键环节:电极制备技术与原理探析

    【美能锂电】观察:在锂离子电池制造体系中,电极制备是决定电池性能、安全性与成本的核心环节。电极极片作为电化学反应的载体,其微观结构直接影响锂离子迁移效率、电子导电网络及电池的整体寿命。本文将系统解析
    的头像 发表于 09-25 18:03 1134次阅读
    <b class='flag-5'>锂电</b>池制造的关键环节:<b class='flag-5'>电极</b>制备技术与原理探析

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI的科学应用

    和关联性 AI驱动科学:研究和模拟人类思维和认识过程。 本章节作者为我们讲解了第五范式,介绍科学发现的一般方法和流程等。一、科学发现的5个范式 第一范式:产生于公元1000年左右的阿
    发表于 09-17 11:45

    超越湿法工艺:下一代锂电干法电极技术现状与展望

    锂离子电池(LIB)已成为现代生活不可或缺的一部分,从手机、笔记本电脑到电动汽车,都离不开它的驱动。然而,您是否曾想过,这块看似简单的电池,其内部核心——电极——的制造过程却是一门极其复杂的科学
    的头像 发表于 09-16 18:03 651次阅读
    超越湿法工艺:下一代<b class='flag-5'>锂电</b>干法<b class='flag-5'>电极</b>技术现状与展望

    长寿命长效埋地饱和硫酸铜参比电极 罐状带电缆长效参比电极

    电极
    邦信防腐郭亚哲
    发布于 :2025年09月08日 22:54:03

    善思创兴薄膜力学断层扫描测试仪:聚焦锂电池材料检测,解决行业核心测试痛点

    充放电循环稳定性。但传统 PEEL 剥离测试仅能获取极片整体剥离强度,无法区分涂层不同深度的性能差异,更无法量化粘结剂在涂层内的分布规律。Bruker 公司针对锂电池极片的研究表明,当极片涂层厚度在
    发表于 08-30 14:16

    锂离子电池多孔电极的电化学性能研究

    高端光学精密测量技术,深耕锂电、半导体等领域的材料性能评估,本文光子湾将聚焦锂离子电池多孔电极的电化学性能机制,解析结构参数与性能的关联规律,为高性能电极设计提供
    的头像 发表于 08-05 17:47 860次阅读
    锂离子电池多孔<b class='flag-5'>电极</b>的电化学性能研究

    宏工科技CIBF 2025展示干法电极新突破,赋能锂电智造升级

    在第十七届中国国际电池技术展览会(CIBF2025)上,宏工科技集中展示了干法电极前段技术、智能包装系统及材料包覆工艺等创新成果,呈现锂电装备领域的技术进阶之路。干法电极前段技术突破当前,干法
    的头像 发表于 05-19 15:04 682次阅读
    宏工科技CIBF 2025展示干法<b class='flag-5'>电极</b>新突破,赋能<b class='flag-5'>锂电</b>智造升级

    电子束半导体圆筒聚焦电极

    电子束半导体圆筒聚焦电极 在传统电子束聚焦中,需要通过调焦来确保电子束焦点在目标物体上。要确认是焦点的最小直径位置非常困难,且难以测量。如果焦点是一条直线,就可以免去调焦过程,本文将介绍一种能把
    发表于 05-10 22:32

    埋地长效硫酸铜参比电极,阴极保护测试桩,预包装参比电极

    电极
    jf_14142521
    发布于 :2025年02月21日 18:50:02

    纳米压印技术:开创下一代光刻的新篇章

    的潜力与趋势。  概述 在芯片制造领域,投影光刻技术能够制造高精度的纳米尺度图形,然而,随着芯片内特征尺寸持续缩小,光的衍射这一客观规律无法避免,对紫外光刻技术产生了显著影响,摩尔定律面临挑战。在这样的背景下,下一代
    的头像 发表于 02-13 10:03 3330次阅读
    纳米压印技术:开创下一代光刻的新篇章

    锂电制造业的先进电极加工技术

    由于电动汽车的普及化,当前锂电池的需求产能正在急剧增长,预计将在2030年达到2500 GWh。
    的头像 发表于 02-11 10:39 902次阅读
    <b class='flag-5'>锂电</b>制造业的先进<b class='flag-5'>电极</b>加工技术

    ADS1299偏置电极的作用是什么?为什么要有这样一个电极

    看数据手册介绍,脑电信号采集有两个特殊的电极,即偏置电极和参考电极(ReferenceElectrode and Bias Electrode )。 参考
    发表于 12-20 06:18