0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

科学设计锂电电极的客观规律介绍

锂电联盟会长 来源:Zeyu Hui 2023-03-28 15:35 次阅读

改变电极的孔隙率和活性物质的负载量,同时采用放电试验对参数进行优化和验证,可以实现锂离子电池能量密度的最大化,从而优化基于物理学的电池多尺度模型。

尽管,电极和活性物质颗粒尺度对能量传输有一定损耗,但电极的最优尺度与其小尺度特性并无关系。电极的特性,如曲率、电解质浓度和锂离子扩散系数,都会影响电极的最佳尺度设计。

可以对其间的相关性进行归纳总结为一种普适性的关系

孔隙率ε=0.13 log10(kεGrτ/(FDoc0))

面密度Qa= kQ/9e07f274-cd36-11ed-bfe3-dac502259ad0.png

这一准则对电极结构的优化具有指导作用。

【研究背景】

锂离子电池由于其能量密度高、功率密度大以及很好的循环寿命,已被广泛地应用在不同的领域。特别是电动汽车,其对锂离子电池提出了更高能量密度、低生产成本和长行驶里程的要求。传输阻抗对提高锂离子电池的能量密度至关重要。

离子传输阻抗可能在多孔电池电极内的不同长度尺度上发生,例如LixNi1/3Mn1/3Co1/3O2(NMC111)电极 (如图1)。在电池运行充放电过程中,电解液中的锂离子扩散不仅要通过多孔电极,而且需要通过由晶体形成的二次聚合物。同时,嵌入的锂还必须从晶体的表面扩散到晶体内部。很难确定这两种离子传输类型中哪一种对电池的影响更大。

因此,通过在电极尺度获得最小的离子迁移阻抗,从而设计最优的电池电极,可能是一种提高电池能量密度更为直接、有效的方法。

9e1200e8-cd36-11ed-bfe3-dac502259ad0.png

图 1. 锂离子在不同长度NMC111电极上的传输示意图。

基于此,哥伦比亚大学的Alan C. West教授等人,建立了一个物理实验模型,并用实验结果对其进行验证。随后,使用验证后的物理模型对电池电极进行参数优化,并证实了锂离子在聚合物和晶体上的传输特性对电极优化参数没有影响。最后,证实了最优的电极设计参数确实具有普适性的关系

必须指出的是,虽然电池循环稳定性因素在该项研究没有考虑,但其在后续研究中,能否获得电池的性能衰减机理是至关重要的。

【研究理论与方法】

如图2a,在一定的电流下为了获得最大的电池体积能量密度,两个方面的因素需要考虑:当增加活性物质负载量或降低电极孔隙率时,电池体积会减小,从而提高电池的体积能量密度,但其降低离子的传输速率,反而导致低的电极材料利用率。

相反地,使用薄且多孔的电极有利于提高电极的利用率,但由于集流体和电池隔膜的厚度是一定的,此种设计方法也会导致体积能量密度的降低,因电池绝大部分的体积被惰性成分占据。

因此,在提高电极利用率和增加活性物质负载量之间,找到一个合适的平衡比例对优化电池的体积能量密度是非常关键的

9e329916-cd36-11ed-bfe3-dac502259ad0.png

图 2. (a) 电极关键设计参数、活性物质负载量和孔隙率的示意图。(b) 不同放电倍率下的最优体积能量密度。(c-d) 获得最高体积能量密度时的最优电极孔隙率和负载量。

如图2b-d所示,以LixNi1/3Co1/3O2(NMC111)为例,除了活性物质外,电极中还含有其他惰性物质,如粘结剂等。此类物质并不具有储锂能力,对电池能量没有贡献,因此,在保证电极稳定的机械性能的前提下,应尽可能地使活性物质的比例最大化,例如粘结剂等惰性物质的体积分数应略大于渗流阈值。另外,尽管电极的电子电导率是有限的,但对于所有的电池来说,电导率越大,电阻越小,电池性能越好。

因此,最佳的电极设计主要取决于电极的孔隙率(电导率决定性因素)和活性物质的负载量。图2b给出了体积能量密度与电流之间的关系,其对应的最佳负载量和电极孔隙率如图2c和2b所示。从图中可以得出,如果要获得一个在电流为1/h下工作的NMC111电极,当孔隙率为0.26且负载量为38 mg/cm2时,电池的体积能量密度最大。

由于增加孔隙率和惰性成分比例,或增加孔隙率、减小负载量,会降低电池的体积能量密度,而由于材料利用率低(每克活性物质所放出的电量),即使降低孔隙率或增加负载量,也会导致电池体积能量密度的降低。图2c显示,最佳活性物质负载量随电流增加而降低,表明电极在具有更高的孔隙率的同时也应该更薄,才能保持活性物质良好的利用率。

【实验结果】

图3给出了最优体积能量密度、最佳ε值和负载量与团聚尺寸和扩散系数的函数关系:最优体积能量密度随着扩散系数的增加或者团聚尺寸的减少而增加。团聚尺寸对体积能量密度的影响,比扩散系数的影响更大。

9e4b70d0-cd36-11ed-bfe3-dac502259ad0.png

图 3.(a)最优体积能量密度与不同活性物质团聚尺寸和扩散系数的关系。(b-c) 最佳ε值和负载量与团聚尺寸和扩散系数的函数关系。

图4a, 4c表明最佳孔隙率与负载量遵循Bruggeman关系

在极端情况下,曲率度是所有孔隙度的总和。随着曲率的增加,电解质的有效扩散系数降低,这会导致更大的最佳孔隙率和更低的最佳负载量,从而保证了良好的电极利用率。图4b, 4d表明当电流放大τ倍时,最佳ε值和负载量与电流呈线性关系。

9e56ff86-cd36-11ed-bfe3-dac502259ad0.png

图 4. (a, c)最优电极参数与电极曲率的关系。(b, d) 最佳ε和负载量与电流放大倍数的关系。

图5a, 5c 表明降低电解质扩散系数或电解液浓度,会导致最佳孔隙率的增加或最优负载量的降低

图5b, 5d显示出Cr与1/(FDoc0)之间的关系。

9e753550-cd36-11ed-bfe3-dac502259ad0.png

图 5. 最佳电极参数与电解质之间的关系,(a, c) 最佳参数与电解液扩散系数和浓度, (b, d) 最佳ε值和负载量与Grτ/(FDoc0)之间的关系。

【实验讨论】

研究人员将提出的电极普适性设计原则应用到NMC、LVO、FEO和VOPO4四种不同的电极材料设计上,如图6所示。根据优化设计的结果显示,图7显示,采用计算的最优参数可以获得95%的理论最大体积能量密度。表明,所提出设计原则具有普适性,并且与活性物质无关。图8表明所计算的最佳ε值与最佳容量负载值(虚线)与数值优化后的结果(实现)非常吻合。特别是在95%灵敏度条件下。

9ea42806-cd36-11ed-bfe3-dac502259ad0.png

图 6. 不同电极材料的SEM图片和放电曲线。

9ebb5e90-cd36-11ed-bfe3-dac502259ad0.png

图 7. 对四种不同电极材料进行优化所获得的结果。

9ec83a48-cd36-11ed-bfe3-dac502259ad0.png

图 8.模拟的最优设计结果与Cr之间的函数关系。

图9表明所提出的最佳负载量Qa与已报到的研究结果基本一致,即使控制参数稍有不同,也与报道的研究结果基本一致。并且所提出的普适性关系也适用于NMC622和LFP电极体系。

9ee7f11c-cd36-11ed-bfe3-dac502259ad0.png

图 9. 最佳面积负载Qa的设计结果与其他研究结果的比较图。

总之,虽然锂离子电池是一个非常复杂且多尺度的系统,其性能受不同尺度的离子传输阻抗的影响。该工作所开发的基于多尺度的物理模型,揭示了电池电极尺度离子传输的最优值与材料微观尺度上的独立性。

考虑到电解液的扩散率、浓度以及电极曲率,将广义电极优化应用于不同活性物质的锂电池电极,从而获得了电池性能与各个参数之间的普适性关系。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    155

    文章

    10999

    浏览量

    222618
  • 锂离子电池
    +关注

    关注

    84

    文章

    3020

    浏览量

    76395
  • 电解质
    +关注

    关注

    6

    文章

    700

    浏览量

    19658
  • 电池电极
    +关注

    关注

    0

    文章

    10

    浏览量

    5661

原文标题:科学设计锂电电极的客观规律

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    电极体系中各个电极的作用是什么

    电极体系是指电化学中有三个电极的体系,其中包括工作电极(即工作电极)、参比电极和计数电极。每个
    的头像 发表于 12-19 09:58 2606次阅读

    电极体系工作电极的作用

    电极体系是一种在电化学分析中常用的实验装置,主要由工作电极、参比电极和对电极组成。其中,工作电极是三
    的头像 发表于 12-14 13:36 596次阅读

    曼恩斯特锂电极片智造“新解法”

    新能源汽车渗透率越过30%市场拐点,叠加全球储能市场发展带动锂电池需求增长,锂电设备及核心部件需求也进一步增长。
    的头像 发表于 11-17 10:16 336次阅读

    AI for Science:利用数据和算法发现自然科学的新规律

    AI for Science是指利用人工智能技术来辅助科学研究,发现自然科学的新规律,解决复杂的科学问题。AI for Science已经在物理、化学、生物、医学等领域取得了一些令人瞩
    的头像 发表于 08-01 11:40 1156次阅读

    变频器产品在锂电池行业中的应用介绍

    锂电池的上游原材料主要包括镍钴锰、锂矿和石墨矿,由此构成正负极材料、电解液、电极基材、隔膜等;
    发表于 07-31 17:44 538次阅读
    变频器产品在<b class='flag-5'>锂电</b>池行业中的应用<b class='flag-5'>介绍</b>

    充电桩费用涨价了?电价上调符合客观规律

     根据了解,新能源汽车公共充电桩的收费主要包括电费和服务费两部分。与之相比,拥有固定停车位并安装了家用充电桩的私人车主并没有受到这次充电费用上涨的影响,而公共充电桩的费用却明显上涨。
    的头像 发表于 07-31 16:26 809次阅读

    ACTBOX艾科特新款锂电池安全箱介绍

    ACTBOX艾科特新款锂电池安全箱介绍
    的头像 发表于 07-09 21:15 329次阅读
    ACTBOX艾科特新款<b class='flag-5'>锂电</b>池安全箱<b class='flag-5'>介绍</b>

    现代测试计量技术及仪器的发展

    测试、计量是人们从客观事物中提取所需信息,借以认识客观事物并掌握其客观规律的一种科学方法,测试测量技术则是通过测试手段实现上述方法的技术。测试计量技术是应用学科,推动着测试计量和仪器研
    的头像 发表于 06-25 14:23 757次阅读
    现代测试计量技术及仪器的发展

    干法电极产业化“崭露锋芒” 纳科诺尔引领锂电辊压技术“跃阶”

    无论是从锂电池辊压工艺革新进化,还是从“干法电极技术”产业化视角来看,2023年都是关键的一年。
    的头像 发表于 06-11 14:35 3077次阅读

    锂电池如何用激光焊接

    锂电池的焊接技术在锂电池生产过程中极为重要,其质量直接影响到锂电池的性能和寿命。对于锂电池的焊接技术,具体包括导线/引线的焊接和电极片的连接
    的头像 发表于 06-07 16:24 1250次阅读

    小马智行与锦江出租达成合作,率先在沪探索技术赋能传统交通新模式

    上海等一线城市先后通过政策制定及推进实施,将自动驾驶从测试阶段推向示范运营阶段,这背后代表自动驾驶技术发展的客观规律,也为Robotaxi运营模式探索和规范管理提供良好的发展土壤。
    的头像 发表于 05-30 11:31 703次阅读

    不同型号电极液位开关之间的区别

    电极液位开关是一种适用于导电液体液位控制的工业仪表,具有反应迅速、可多点预警、体积小巧、抗干扰等优点。根据不同的工况和使用要求,电极液位开关分为电缆型、连杆型两类,根据液位检测电极数量又分为单
    的头像 发表于 05-17 17:52 696次阅读

    锂电池防爆箱介绍

    锂电池防爆箱介绍
    的头像 发表于 05-10 10:36 1015次阅读
    <b class='flag-5'>锂电</b>池防爆箱<b class='flag-5'>介绍</b>

    电极电阻测量,防雷接地电极设计原理和测试方案

    了解与接地电极系统设计相关的电极电阻测量是理解设计、接地电阻和土壤电阻率测量和计算的基本原理的关键。以下是地凯科技接地电极设计原理和测试系列的介绍 地凯科技防雷接地的解决方案 1.土壤
    的头像 发表于 04-06 09:26 598次阅读
    <b class='flag-5'>电极</b>电阻测量,防雷接地<b class='flag-5'>电极</b>设计原理和测试方案

    更换与旧电极臂对齐的电极

    如果两根电极臂都必须更换,我们建议您首先更换与旧电极臂对齐的电极臂,然后再更换第二根电极臂。第 1 步:切断机器人焊钳电流,释放压力并排出气动元件的气体。
    的头像 发表于 03-31 14:01 926次阅读