0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一种面向3D微流控芯片的纳米纤维自支撑增材制造方法

微流控 来源:Microsystems Nanoengineering 2023-02-20 17:07 次阅读

微流控芯片在个性化诊疗、环境和食品检测、生物医学工程等领域具有广泛的应用,这得益于其高效的功能单元整合能力。与2D结构相比,3D微流控器件具有更高密度的功能单元(如可动膜腔结构和功能化纳米纤维等),这使得其能够进行复杂的流体操作和高通量检测。

实验室常用的3D微流控芯片主要采用软光刻、对准、键合等多步工艺进行制造,该过程流程繁琐,环境洁净度要求高,且对工艺人员的操作技能提出一定要求,这极大限制了微流控芯片的制造效率及其结构设计的灵活性。

3D打印技术具备一体化和高通量的制造特征,为微流控芯片的制造提供了绝佳的技术方案。典型地,光固化打印技术(如DLP、SLA等)能提供高分辨率的流体通道,熔融沉积成型(FDM)和多射流喷射成型(MJP)技术则擅长于构建多材料微流控芯片。

然而,这些3D打印方法在打印极窄通道和T形微通道时常遇到通道堵塞的常见问题。此外,悬垂结构(可动膜、悬臂梁等)的3D打印也面临着牺牲层去除时由液体表面张力引起的结构塌陷问题。

近期,厦门大学孙道恒教授团队提出了一种实用的增材制造策略——纳米纤维自支撑增材制造(NSCAM)方法,通过交替使用静电纺丝和电流体动力射流(E-jet)直接制造3D微流控芯片。NSCAM基于电纺纳米纤维的自支撑效应和多孔化结构特性,创新性地将纳米纤维用作悬垂结构打印的支撑层和工作流体的渗流介质。

通过直写墨水在纳米纤维中的可控渗透,形成图案化的3D通道壁。整个制造过程可以实现一体化制备3D微流控芯片,同时避免了去牺牲层和对准键合流程。作为演示,该研究制作并测试了一个典型的3D流体微阀,该阀具有3D微流控通道、悬臂式结构和可动膜结构,验证了该方法的可行性和优势性。

0ed3355e-b0f9-11ed-bfe3-dac502259ad0.jpg

图1 纳米纤维自支撑工艺流程:(a)交替静电纺丝与静电直写工艺制备纳米纤维自支撑型3D微流控通道;(b)以3D微流控压力增益阀的制备为例,展示NSCAM工艺的具体流程:(i)在玻璃基底上静电纺丝;(ii)将静电直写墨水((也被称为“筑型流体”))喷印在纳米纤维上,保证膜的渗穿;(iii-iv)通过静电直写工艺图案化筑型流体墨水,以制备控制流道层结构;(v-vi)控制墨水在纳米纤维上的纵向渗透距离以形成完整流道结构;(vii-xiv)输入流道层、连接流道层、输出流道层、封顶层的构建;(xv-xvi)3D微流控压力增益阀工作原理

在打印过程中,静电纺丝和静电直写交替进行。通过静电纺丝形成的纳米纤维被用作多孔基底,静电直写墨水(也被称为“筑型流体”)被喷印在纳米纤维膜上。筑型流体在多孔纳米纤维中的铺展和渗透行为主要受打印温度的调控,当基板保持温度设置为90℃时,最小穿透深度为~45 μm。

在NSCAM过程中,电纺纳米纤维被用作每一切片层的基底,并在打印流道封顶层时被用作微通道的支撑材料。在打印流道底层(ii)和流道层(iv)时,筑型流体彻底穿透纳米纤维,并在固化后形成通道下壁和侧壁。在打印流道封顶层(vi)时,通过控制筑型流体的纵向穿透距离来形成通道。重复这两个过程,可以逐层堆叠制备三维微纳结构。

0f070cb2-b0f9-11ed-bfe3-dac502259ad0.jpg

图2 含自支撑纳米纤维的二维微流控器件:(a)微流控芯片;(b)在流体通道层制备过程中,分别交替进行1次、2次和3次静电纺丝和静电直写以创建不同高度的单层微流控通道;(c)工作流体通过含自支撑纳米纤维的微通道;(d)含自支撑纳米纤维的微通道截面

静电纺丝纳米纤维在厚度方向上具有连续性。因此,通过控制纳米纤维膜的厚度,可以获得不同高度的微通道。控制每次电纺纳米纤维的厚度保持在~25 μm,以确保筑型流体完全渗穿纳米纤维膜。通过增加交替静电纺丝和静电直写的次数,分别获得了高度为26 μm(交替1次),51.23 μm(交替2次)和76.54 μm(交替3次)的微流控通道。

向通道中注入工作流体(蓝色染料),得益于纳米纤维的多孔性,工作流体可在通道中顺畅流动,且通道中的纳米纤维可将流道封顶层和流道底层连接起来,并支撑悬浮的流道封顶层以防止塌陷。

0f5c6b4e-b0f9-11ed-bfe3-dac502259ad0.jpg

图3 微流控增益阀的结构特性:(a)示意图;(b)设计结构尺寸;(c-d)工作原理;(e)打印的阀芯截面;(f)可动膜在通道中压力作用下的挠曲特性

为了证明NSCAM的可行性和优势性,该研究制备了一个微流控压力增益阀。微阀控制通道的高度和宽度分别约为350 μm和5 mm,宽高比高达为15。当向控制通道施加气压时,可动膜向连接流道层偏转。随着控制压力的增加,位移达到最大点,此时薄膜完全堵塞了连接孔,切断了输出通道层中的流速。

结果表明,当控制通道中的空气压力从0 kPa增加到64 kPa时,位于膜中心的最大偏转点达到最大位移590 μm。

101b46f4-b0f9-11ed-bfe3-dac502259ad0.jpg

图4 微流控增益阀的功能特性:(a)微阀压力静态响应;(b)微阀循环动态响应

在输入流道中以135 μL/h的流量通入流体,随着控制流道中压力的升高(0~10 kpa),输出流道的流量降低,这主要是由于纳米纤维的压缩。接着提高控制压力,由于纳米纤维的压缩程度有限,输出流速响应存在一个压力不应期(即10 ~20 kPa之间),这有利于稳定输出流量在~80 μL/min。截止压力出现在45 kPa,这时纳米纤维膜被极大压缩,可被视为无孔隙薄膜,并在压力作用下偏转将连接层流道完全堵塞。为了评估阀门的动态性能,将KCL溶液通入输入流道,并在流路中施加12 V电压。

当控制压力从0 kPa上升到35 kPa时,连接层流道过流截面减小,电流值从500 μA下降到250 μA,压力负载和电流变化之间的延迟约为52.6 ms。接着对阀门开展了频率为0.15 Hz的循环测试,在高于100次重复加载-卸载测试中未见结构失效。

综上所述,该研究演示了一种面向3D微流控芯片的免去牺牲层增材制造方法,避免了传统增材制造方法支撑结构去除过程中由溶剂挥发或树脂溶留阻塞等现象造成的微结构失效。该方法采用电纺纳米纤维作为3D打印支撑结构,并通过静电直写实现每层切片的微尺度图案化。文章研究了直写墨水在电纺纳米纤维中的铺展渗透规律,实现了~120 μm 和~45 μm的横、纵向打印分辨率,制备的3D流体微阀可实现~50ms的快速开关响应。







审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • dlp
    dlp
    +关注

    关注

    6

    文章

    330

    浏览量

    60684
  • SLA
    SLA
    +关注

    关注

    1

    文章

    51

    浏览量

    18182
  • FDM
    FDM
    +关注

    关注

    0

    文章

    50

    浏览量

    12439
  • 微流控芯片
    +关注

    关注

    13

    文章

    228

    浏览量

    18644
  • 3D打印技术
    +关注

    关注

    4

    文章

    210

    浏览量

    31693

原文标题:面向3D微流控芯片的纳米纤维自支撑增材制造方法

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    基于隐形飞机喷气式发动机双S弯喷管的纤维缠绕工艺

    ,但在其他区域会形成均匀的厚度分布。 通过3D图形查看器(图2e)可以预测缠绕过程中机器与芯轴之间的碰撞,在这种情况下,机器的运动不受芯轴的干扰。 使用一种相对便宜的碳纤维束来优化缠绕工艺条件。在实际
    发表于 04-19 09:52

    包含具有多种类型信息的3D模型

    、安全和高效的建筑系统,让居住者能够拥有可持续、弹性舒适且符合人体工程学的建筑。建筑信息模型 (BIM) 是建筑工程师在建筑物和其他结构设计中使用的一种3D建模过程。BIM软件提供了个基于模型
    发表于 03-28 17:18

    3D动画原理:电阻

    电阻3D
    深圳崧皓电子
    发布于 :2024年03月19日 06:49:19

    友思特C系列3D相机:实时3D点云图像

    3D相机
    虹科光电
    发布于 :2024年01月10日 17:39:25

    什么是聚集度指数PDI粒径分布-LNP脂质纳米颗粒的PDI的影响因素

    的增加而增加。图3 LNP合成装置(中试级)五、不同方法测量PDI的优缺点 1. 动态光散射仪(DLS):DLS是一种常用的测量颗粒尺寸和PDI的方法。它具有非接触式、无需样品处理等优
    发表于 11-28 13:38

    纳米级测量仪器:窥探微观世界的利器

    共聚焦光学系统为基础,结合高稳定性结构设计和3D重建算法共同组成测量系统,能用于各种精密器件及材料表面的非接触式微纳米测量。能测量表面物理形貌,进行纳米尺度的三维形貌分析,如
    发表于 10-11 14:37

    飞腾派3D打印外壳

    飞腾派排针在背面,所以最理想的摆放方法是立起来,自己3D画了个外壳。目前还有些小瑕疵,不过已经可以用了,非常不错。 加了座子以后随便什么HDMI,网线都不怕被拉倒了。 背面已经上了minipcie转nvme的转接板,比T
    发表于 09-24 21:14

    光学3D表面轮廓仪可以测金属吗?

    测量金属制品的长度、宽度、高度等维度参数。 除了测量金属表面的形状和轮廓外,光学3D表面轮廓仪还可以生成三维点云数据和色彩图像,用于进步分析和展示: 1、三维点云数据可以用于进行CAD模型比对、工艺
    发表于 08-21 13:41

    低成本3D扫描仪机械部分设计中。#3d打印 #3d扫描 #3d建模 #3d #fusion

    3D扫描仪
    学习电子知识
    发布于 :2023年07月03日 20:13:56

    STEP与WRL 3D模型的区别

    “ KiCad 7支持两格式的3D模型:STEP和WRL。本文简述了STEP与WRL的区别,以及这两格式在哪些场合应用更合理。 ” 简介 这两格式在本质上是不同的。wrl格式是
    发表于 06-16 11:26

    3D扫描进度更新,在等快递。还有准备3D打印。#3d建模 #3d扫描 #三维扫描 #3d设计 #创客

    3D打印机3D打印
    学习电子知识
    发布于 :2023年05月28日 20:54:11

    3d打印机已经满足不了我了 #车床 #铣床 #3d打印 #物联网 #3d

    3D打印机3D打印
    学习电子知识
    发布于 :2023年05月28日 20:53:32

    台通过USB远程控制的3D打印机,有人构建了通过WiFi控制的USB开关吗?

    我有台可以通过 USB 远程控制的 3D 打印机,有人构建了通过 WiFi 控制的 USB 开关吗?我希望能够将 2 个 USB 连接(来自不同的计算机)切换到 3D 控制器板。我想我可以做切换
    发表于 05-22 06:09

    使用Arduino和网络摄像头的基本视频

    非常喜欢 OctoPi 的基本视频功能但独立(不在所有 3D 打印 gubbins 中)。 TL:DR: 在个理想的世界中,我所追求的是一种通过 Arduino 通过 WiFi 从网络摄像头流式传输
    发表于 05-04 06:51