0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

活性屏等离子体制备高性能SiOx/C负极

清新电源 来源:科学材料站 2023-02-08 09:53 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

研 究 背 景

目前,以锂离子电池(LIBs)为代表的储能装置已被作为存储可再生能源的主要解决方案。然而,由于石墨和钛酸锂等负极材料容量有限,仍无法满足电子器件对高能量密度和寿命的期望。在现有的负极材料中,SiOx由于Si-O键结构稳定,循环稳定性提高,理论容量高,成本低,可加工性好,是硅负极的潜在替代品。然而,其电导率不理想(6.7×10−4S cm−1)和体积变化相对较大,要满足对SiOx的高商业需求仍然具有挑战性。

针对上述问题,通过设计良好的纳米结构将SiOx与碳复合被认为是一种解决方案,特别是充分利用纳米碳复合材料可以实现高效的电子/离子传输和稳定的结构。目前硅碳复合材料的制备主要采用固相法(铝热还原法和球磨法),液相法(水热法和溶胶-凝胶法)和气相法(化学气相沉积和物理气相沉积)。其中,气相方法能够灵活和可控性地生长具有良好纳米结构的复合材料,但低沉积速率和高温高压条件阻碍了它的进一步应用。

令人惊喜的是,在真空反应环境产生的等离子体可以通过溅射、反应等方式诱导材料表面形貌和结构的变化。然而,直接轰击也容易对脆弱的纳米结构造成破坏。因此,需要开发一种具有可控离子轰击效应的等离子体基技术,在保持纳米结构的同时有效沉积足够的活性材料。

文 章 简 介

基于此,来自东南大学的陈坚教授与张耀研究员合作,在国际知名期刊Carbon上发表题为“Plasma enabled in-situ deposition of hybrid structured SiOx/C on polymorphous carbon hosts for superior lithium storage”的研究文章。该研究文章利用柔性可控的活性屏等离子体制备了一系列具有高ICE和比容量的SiOx/C复合材料,并为制备高性能硅碳负极提供了新的思路和方法。

本 文 要 点

要点一:等离子体在多形态碳宿主上制备SiOx/C负极

该工作基于成本和形态特性,选取氧化石墨烯(GO)、活性炭(AC)、碳纳米纤维(CNF)、CMK-3等多态碳宿主作为研究对象,深入了解活化屏等离子体在碳纳米宿主上的沉积行为。沉积后依次命名为SOC-G、SOC-H、SOC-T、SOC-CMK。SOC-G虽然保持了原有的结构,但表面明显变得粗糙,边缘弯曲,这可能是由于沉积物的形成。

相比之下,AC和CNF沉积物以细化晶粒的形式出现,而不是层状组织,处理后原有组织被严重破坏。其中SOC-H的结构是原始表面明显退化,SOC-T转变为严重粉碎的微小纤维。SOC-CMK杆状结构沿内部介孔通道分解成多纤维状结构,粒状沉积物覆盖了整个表面。根据上述结果,在多形态碳宿主上沉积硅氧化物的原理图如图1l所示。

首先,构建硅活化屏代替碳材料作为阳极,在H和O等离子体轰击下硅原子从活化屏中逸出并与O结合沉积在碳材料上。同时,一部分H等离子体穿过活化屏刻蚀氧化硅并产生空位。研究发现在SiOx沉积后,CMK-3的结构形态结合了GO、AC和CNF的优点。SOC-CMK不仅表面有致密的SiOx涂层,而且等离子轰击将原始结构分散为纤维结构,使CMK-3的介孔能够容纳更多的硅氧化物。

826963fc-a731-11ed-bfe3-dac502259ad0.jpg

Figure 1. the TEM morphology data of SOC-T (a-b), SOC-G (c-d), SOC-H (e-f) and SOC-CMK (g-h), and corresponding elemental mappings of Si, O, and C (i-k); (l) schematic illustration of the preparation process on different carbon.

要点二:温度调控优化SiOx/CMK-3结构与性能

采用活化屏等离子体在300℃、400℃和500℃下将SiOx沉积在CMK-3上,研究沉积温度对SiOx/CMK-3结构和形态的影响。对比三种材料可以明显看出,沉积速率和粒子轰击效应随着沉积温度的升高而增加。利用XPS深度分析探究了SiOx在CMK-3上的均匀性,分析发现从内部到表面均为SiOx结构,Si价态变化归因于氧化程度的不同。

形貌显示随着温度升高CMK-3逐渐通过内部介孔通道分散,增强了复合材料结构的松散程度。结合上述分析,在CMK-3上活化屏等离子体沉积SiOx的过程可以通过图2i显示。以SOC-CMK为例,CMK-3在高能等离子体(400°C)轰击下,SiOx被溅射并被沉积进入CMK-3的孔隙中,孔隙被填满后SiOx继续在表面均匀沉积,形成SOC-CMK。这种结构由内部的CMK-3介孔通道、中间被超细纳米SiOx填充的多孔结构和表面的SiOx外壳组成。此外,复合结构还拥有等离子刻蚀形成的氧空位等缺陷。

8285900e-a731-11ed-bfe3-dac502259ad0.jpg

Figure 2. (a) Cyclic voltammetry curves for the first three cycles at 0.1mVs-1 for SOC-CMK; (b) cycling curves of SOC-300, SOC-CMK and SOC-500 at 0.1 A·g-1; (c) charge/discharge curves at 0.1 A·g-1; (d) rate performance; (e) cycling curves at 1Ag-1; (f) Comparison of this work and previous work on ICE and initial discharge capacity.

要点三:杂化结构SiOx/CMK-3的优势

这种复合结构内部保持CMK-3的有序介孔通道,中间为纳米SiOx均匀分布的多孔结构,外部为SiOx的连续壳层。随着沉积温度的上升,复合结构的分散程度逐渐增加,SiOx的含量也逐渐增加。电化学行为研究表明在充放电过程中纳米SiOx、多孔碳结构和SiOx外壳可以抑制体积膨胀、降低应力集中和减少SEI的反复生成,CMK-3的碳基质与介孔通道能够提升电子传导性和扩散动力学。

此外,ASP还能够增加比表面积和制造氧空位以提升SiOx/CMK-3的储锂位点与电导率。上述优势使得复合电极具备良好的首次库伦效率、高容量和优异的循环稳定性。优化后的SOC-CMK在组装半电池时在1 A·g-1循环4000圈后仍保持618.9 mAh·g-1的容量,容量保持率接近91%。组装NCM811//SOC-CMK全电池时,在1 A·g-1下循环500圈后仍然能提供449.6 mAh·g-1的容量。

要点四:前瞻

近年来,等离子体技术在纳米材料合成和表面改性方面显示出良好的前景。等离子体技术能够实现表面结合和引入缺陷等行为,以及在不改变整体结构的情况下高精度地诱导电极材料的纳米级反应和纳米结构,并具有改善材料的表面润湿性和吸附能力、优化表面结构以及提高电催化活性等显著优势。因此,等离子体技术在应用于快速转换反应和储能领域的材料(金属氮化物、氧化物和碳基材料等)改性与制备方面表现出很高的潜力。

东南大学陈坚课题组一直致力于等离子体技术在功能材料领域的应用研究,从缺陷调控、结构优化与构筑等方面对材料的形貌、结构、组分和缺陷进行调控和优化,构建出一系列高性能的负极材料。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3529

    浏览量

    80224
  • soc
    soc
    +关注

    关注

    38

    文章

    4514

    浏览量

    227594
  • NCM811
    +关注

    关注

    0

    文章

    6

    浏览量

    1566

原文标题:东南大学陈坚教授与张耀研究员Carbon,活性屏等离子体制备高性能SiOx/C负极

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    光谱椭偏术在等离子体光栅传感中的应用:参数优化与亚皮米级测量精度

    基于衍射的光学计量方法(如散射测量术)因精度高、速度快,已成为周期性纳米结构表征的关键技术。在微电子与生物传感等前沿领域,对高性能等离子体纳米结构(如金属光栅)的精确测量提出了迫切需求,然而现有传统
    的头像 发表于 12-03 18:05 63次阅读
    光谱椭偏术在<b class='flag-5'>等离子体</b>光栅传感中的应用:参数优化与亚皮米级测量精度

    探索微观世界的“神奇火焰”:射频等离子体技术浅谈

    你是否想象过,有一种特殊的“火焰”,它并不灼热,却能瞬间让材料表面焕然一新;它不产生烟雾,却能精密地雕刻纳米级的芯片电路?这种神奇的“火焰”,就是今天我们要介绍的主角——射频等离子体(RF Plasma)。
    的头像 发表于 10-24 18:03 1082次阅读

    PECVD的基本定义和主要作用

    PECVD( Plasma Enhanced Chemical Vapor Deposition ,等离子体增强化学气相沉积)是一种通过射频( RF )电源激发等离子体,在低温条件下实现薄膜沉积的半导体制造技术。其核心在于利用
    的头像 发表于 10-23 18:00 2147次阅读
    PECVD的基本定义和主要作用

    高端芯片制造装备的“中国方案”:等离子体相似定律与尺度网络突破

    图1.射频放电诊断系统与相似射频放电参数设计 核心摘要: 清华大学与密歇根州立大学联合团队在顶级期刊《物理评论快报》发表重大成果,首次通过实验验证了射频等离子体的相似性定律,并成功构建全球首个
    的头像 发表于 07-29 15:58 484次阅读
    高端芯片制造装备的“中国方案”:<b class='flag-5'>等离子体</b>相似定律与尺度网络突破

    远程等离子体刻蚀技术介绍

    远程等离子体刻蚀技术通过非接触式能量传递实现材料加工,其中热辅助离子束刻蚀(TAIBE)作为前沿技术,尤其适用于碳氟化合物(FC)材料(如聚四氟乙烯PTFE)的精密处理。
    的头像 发表于 06-30 14:34 991次阅读
    远程<b class='flag-5'>等离子体</b>刻蚀技术介绍

    安泰高压放大器在等离子体发生装置研究中的应用

    等离子体发生装置通过外部能量输入使气体电离生成等离子体,在工业制造、材料科学、生物医疗等领域应用广泛。高压放大器作为能量供给的核心器件,直接影响等离子体的生成效率、稳定性和可控性。 图
    的头像 发表于 06-24 17:59 415次阅读
    安泰高压放大器在<b class='flag-5'>等离子体</b>发生装置研究中的应用

    上海光机所在多等离子体通道中实现可控Betatron辐射

    图1. 等离子体多通道Betatron振荡产生的示意图 近期,中国科学院上海光学精密机械研究所超强激光科学与技术全国重点实验室研究团队提出了一种基于双激光脉冲干涉的新型高亮度X射线源产生方案。该团
    的头像 发表于 06-12 07:45 326次阅读
    上海光机所在多<b class='flag-5'>等离子体</b>通道中实现可控Betatron辐射

    通快霍廷格电子携前沿等离子体电源解决方案亮相SEMICON China 2025

    通快霍廷格电子等离子体射频及直流电源为晶圆制造的沉积、刻蚀和离子注入等关键工艺提供精度、质量和效率的有力保障。 立足百年电源研发经验,通快霍廷格电子将持续通过创新等离子体电源解决方案,助力半导体产业
    发表于 03-24 09:12 543次阅读
    通快霍廷格电子携前沿<b class='flag-5'>等离子体</b>电源解决方案亮相SEMICON China 2025

    等离子体光谱仪(ICP-OES):原理与多领域应用剖析

    等离子体光谱仪(ICP-OES)凭借其高灵敏度、高分辨率以及能够同时测定多种元素的显著特点,在众多领域发挥着关键作用。它以电感耦合等离子体(ICP)作为激发源,将样品原子化、电离并激发至高能级,随后
    的头像 发表于 03-12 13:43 3163次阅读
    <b class='flag-5'>等离子体</b>光谱仪(ICP-OES):原理与多领域应用剖析

    等离子体蚀刻工艺对集成电路可靠性的影响

    随着集成电路特征尺寸的缩小,工艺窗口变小,可靠性成为更难兼顾的因素,设计上的改善对于优化可靠性至关重要。本文介绍了等离子刻蚀对高能量电子和空穴注入栅氧化层、负偏压温度不稳定性、等离子体诱发损伤、应力迁移等问题的影响,从而影响集成电路可靠性。
    的头像 发表于 03-01 15:58 1418次阅读
    <b class='flag-5'>等离子体</b>蚀刻工艺对集成电路可靠性的影响

    等离子体的一些基础知识

    等离子体(Plasma)是一种电离气体,通过向气体提供足够的能量,使电子从原子或分子中挣脱束缚、释放出来,成为自由电子而获得,通常含有自由和随机移动的带电粒子(如电子、离子)和未电离的中性粒子。由于
    的头像 发表于 01-20 10:07 8263次阅读
    <b class='flag-5'>等离子体</b>的一些基础知识

    OptiFDTD应用:纳米盘型谐振腔等离子体波导滤波器

    简介 : 表面等离子体激元(SPPs)是由于金属中的自由电子和电介质中的电磁场相互作用而在金属表面捕获的电磁波,并且它在垂直于界面的方向上呈指数衰减。[1] 与绝缘体-金属-绝缘体(IMI
    发表于 01-09 08:52

    等离子的基本属性_等离子体如何发生

    射频等离子体(RF等离子体)是在气流中通过外部施加的射频场形成的。当气体中的原子被电离时(即电子在高能条件下与原子核分离时),就会产生等离子体。这种电离过程可以通过各种方法实现,包括热、电和电磁
    的头像 发表于 01-03 09:14 2419次阅读
    <b class='flag-5'>等离子</b>的基本属性_<b class='flag-5'>等离子体</b>如何发生

    等离子体电光调制器研究与应用文献

    昊量光电新推出基于表面等离子体激元(SPP)和硅光子集成技术的高速等离子体电光调制器,高带宽可达145GHz,可被广泛用于通信,量子,测试测量等领域,不仅提供带宽70GHz-145GHz的环形谐振
    的头像 发表于 12-20 14:39 1074次阅读

    100GHz等离子体电光调制器在低温领域的应用

    我们展示了一种高能效的100GHz等离子体调制器,在4K下运行,用于超过128 GBd/s的数据调制,并且具有超低的驱动电压0.1 V。在低温下的高速组件是可扩展的下一代量子计算系统的基本构建模块。
    的头像 发表于 12-20 14:35 1202次阅读
    100GHz<b class='flag-5'>等离子体</b>电光调制器在低温领域的应用