0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

无标记等离子体纳米成像新技术

jf_64961214 来源:jf_64961214 作者:jf_64961214 2023-11-27 06:35 次阅读

一种使用等离子体激元的新型成像技术能够以增强的灵敏度观察纳米颗粒。休斯顿大学纳米生物光子学实验室的石伟川教授和他的同事正在研究纳米材料和设备在生物医学、能源和环境方面的应用。该小组利用等离子体技术开发了一种基于局部表面等离子体成像的新成像技术,可以检测直径小于25纳米的粒子。

研究人员将该技术称为PANORAMA(超近场调制等离子体纳米孔径无标记成像)。与其他基于等离子体的成像技术相比,PANORAMA利用局域化等离子体效应的局域化和倏逝波特性实现了非常高的空间和垂直分辨率。该技术还使用普通亮场照明来产生更大的信号强度,可用于在毫米曝光时间内对纳米颗粒进行快速成像。

实验装置使用带有ProEM 1024 EMCCD相机的倒置显微镜进行检测,其中20 nm宽的带通滤波器被放置在位于样品和相机之间的4f光学系统的傅立叶平面中。由于局部表面等离子体共振,滤波器被选择在消光的红色一侧。

通过平均尺寸为360nm、厚度为50nm的Au纳米盘阵列照射样品。如果感兴趣的物体进入磁盘阵列的近场范围,折射率的变化会导致消光红移,并增加可以在相机上检测到的光透射。

该小组证明,该技术可用于将聚苯乙烯纳米颗粒的尺寸与低于25纳米的尺寸进行比较,并测量接近表面的颗粒的动力学。由于明亮的照明,即使在毫秒范围内的短曝光时间内也能实现良好的信噪比。此外,由于没有使用荧光标记,该技术不会受到导致漂白或低发射的影响。

未来,该技术可以与表面功能化方法相结合,在生物医学传感和成像应用中研究纳米颗粒、囊泡和病毒。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 等离子体
    +关注

    关注

    0

    文章

    104

    浏览量

    13998
  • 成像
    +关注

    关注

    2

    文章

    213

    浏览量

    30252
收藏 人收藏

    评论

    相关推荐

    等离子发动机的原理 等离子发动机最大推力是多少

    等离子发动机原理: 等离子发动机是一种利用电磁力将离子加速并喷射出来产生推力的发动机。它主要包括等离子体产生器、离子加速器和喷嘴等组成。下面
    的头像 发表于 02-14 18:18 3509次阅读

    掀起神秘第四态的面纱!——等离子体羽流成像

    通常在高温或高能环境中出现,如太阳、恒星、闪电、等离子体切割工具、核聚变反应等地都存在等离子体。激光诱导等离子体羽形貌成像有助于深入了解等离子体
    的头像 发表于 12-26 08:26 250次阅读
    掀起神秘第四态的面纱!——<b class='flag-5'>等离子体</b>羽流<b class='flag-5'>成像</b>

    解决方案-皮秒激光产生的等离子体对硅材料加工过程成像

      01、重点和难点 在硅材料加工和研究领域,皮秒脉冲激光激发的等离子体对于提高加工技术、开发创新设备以及加深对材料物理特性的理解都有重大研究意义。这种影响尤其体现在硅材料表面等离子体形态变化的研究
    的头像 发表于 12-19 10:53 281次阅读
    解决方案-皮秒激光产生的<b class='flag-5'>等离子体</b>对硅材料加工过程<b class='flag-5'>成像</b>

    针对氧气(O2)和三氯化硼(BCl3)等离子体进行原子层蚀刻的研究

    技术提供了典型应用。蚀刻工艺对器件特性有着较大的影响,尤其是在精确控制蚀刻深度和较小化等离子体损伤的情况下影响较大。
    的头像 发表于 12-13 09:51 401次阅读
    针对氧气(O2)和三氯化硼(BCl3)<b class='flag-5'>等离子体</b>进行原子层蚀刻的研究

    太阳能电池中表面等离子体增强光捕获技术

    光捕获技术是提高太阳能电池光吸收率的有效方法之一,它可以减少材料厚度,从而降低成本。近年来,表面等离子体(SP)在这一领域取得了长足的进步。利用表面等离子体的光散射和耦合效应,可以大大提高太阳能电池的效率。
    的头像 发表于 12-05 10:52 623次阅读
    太阳能电池中表面<b class='flag-5'>等离子体</b>增强光捕获<b class='flag-5'>技术</b>

    ATA-7030高压放大器在等离子体实验中的应用有哪些

    高压放大器在等离子体实验中有多种重要应用。等离子体是一种带电粒子与电中性粒子混合的物质,其具有多种独特的物理性质,因此在许多领域具有广泛的应用,例如聚变能源、等离子体医学、材料加工等。下面安泰电子将介绍高压放大器在
    的头像 发表于 11-27 17:40 211次阅读
    ATA-7030高压放大器在<b class='flag-5'>等离子体</b>实验中的应用有哪些

    基于表面等离子光谱梳和金纳米颗粒标记的快速超灵敏核酸检测

    众所周知,倾斜光纤光栅可以激发众多的包层模式,并且对光纤表面周围环境敏感。当光纤包层模式与表面等离子共振相位匹配时,倾斜光纤光栅可以在金表面激发倏逝表面等离子体共振波。
    的头像 发表于 10-20 15:48 372次阅读
    基于表面<b class='flag-5'>等离子</b>光谱梳和金<b class='flag-5'>纳米</b>颗粒<b class='flag-5'>标记</b>的快速超灵敏核酸检测

    等离子体清洗工艺的关键技术 等离子体清洗在封装生产中的应用

    等离子体工艺是干法清洗应用中的重要部分,随着微电子技术的发展,等离子体清洗的优势越来越明显。文章介绍了等离子体清洗的特点和应用,讨论了它的清洗原理和优化设计方法。最后分析了
    的头像 发表于 10-18 17:42 565次阅读
    <b class='flag-5'>等离子体</b>清洗工艺的关键<b class='flag-5'>技术</b> <b class='flag-5'>等离子体</b>清洗在封装生产中的应用

    等离子体纳米结构的光谱成像

    背景 Adi Salomon 教授的实验室主要致力于了解纳米级分子与光的相互作用,并构建利用光传感分子的设备。该小组设计并制造了金属纳米结构,并利用它们通过与表面等离子体激元的相互作用来影响
    的头像 发表于 09-19 06:28 258次阅读
    <b class='flag-5'>等离子体</b><b class='flag-5'>纳米</b>结构的光谱<b class='flag-5'>成像</b>

    等离子体

    电路元器件电容晶体管电子技术电子diy
    学习电子知识
    发布于 :2023年08月30日 23:03:15

    使用铜纳米结构控制等离子体

    来自斯图加特大学(德国)的 Harald Gießen 教授的团队正在致力于将光子学和纳米技术用于新的应用和设备。研究人员正在研究通过控制等离子体效应来创建显示器的技术。等离激元学研究光与金属
    的头像 发表于 08-23 06:33 235次阅读
    使用铜<b class='flag-5'>纳米</b>结构控制<b class='flag-5'>等离子体</b>

    等离子体蚀刻率的限制

    随着集成电路互连线的宽度和间距接近3pm,铝和铝合金的等离子体蚀刻变得更有必要。为了防止蚀刻掩模下的横向蚀刻,我们需要一个侧壁钝化机制。尽管AlCl和AlBr都具有可观的蒸气压,但大多数铝蚀刻的研究
    的头像 发表于 06-27 13:24 362次阅读
    铝<b class='flag-5'>等离子体</b>蚀刻率的限制

    制造等离子纳米金刚石

    近日,Nano Letters(《纳米快报》)在线发表武汉大学高等研究院梁乐课题组和约翰霍普金斯大学Ishan Barman课题组关于高效构建等离子增强NV色心的纳米器件研究进展,他们利用自下向上的DNA自组装方法开发了一种混合
    的头像 发表于 06-26 17:04 429次阅读
    制造<b class='flag-5'>等离子</b><b class='flag-5'>纳米</b>金刚石

    捕获“彩虹”超分辨率的位移光谱成像

    基于成像的传感技术是实现生物或化学方面一些重要信息可视化的主要工具。然而,由于经典光学存在衍射极限,为了实现更好的成像能力,传统的光学成像系统通常需要庞大的体积,并且价格昂贵。微型
    发表于 06-20 12:35 302次阅读
    捕获“彩虹”超分辨率的位移光谱<b class='flag-5'>成像</b>仪

    强磁场中等离子体湍流的性质和机制

    在天体物理学中,有许多天体都具有强大的磁场,例如恒星、行星和黑洞。这些天体周围通常有大量的等离子体,例如恒星风、行星际介质和吸积盘。
    的头像 发表于 05-17 09:24 486次阅读