0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

氮化铝陶瓷基板的金属化工艺介绍

jf_tyXxp1YG 来源:中科聚智 2023-02-07 10:01 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群


前言

氮化铝陶瓷具有优异的电性能和热性能,被认为是最具有前途的高热导陶瓷基片材料。为了封装结构的密封,元器件搭载及输入、输出端子的连接等目的,氮化铝陶瓷基板表面及内部均需要金属化。

陶瓷表面金属化的可靠性和性能对陶瓷基板的应用有重要的影响,牢固的结合强度和优良的气密性是最基本的要求。考虑到基板的散热性,还要求金属和陶瓷界面处能够具有较高的热导率。氮化铝陶瓷表面的金属化方法有:薄膜法、厚膜法、高熔点金属化法、化学镀法、直接覆铜法(DBC)等。

薄膜法

薄膜法是采取离子镀、真空蒸镀、溅射镀膜等方法在氮化铝陶瓷基板上制备金属薄膜。理论上任何金属薄膜都可以通过气相沉积技术镀在任何基板材料上,但是为了获得粘结强度更好的基板/金属膜层系统,一般要求两者的热膨胀系数应尽量匹配。通常在多层结构基板中,基板内部金属和表层金属不尽相同,陶瓷基板相接触的薄膜金属应该具有反应性好、与基板结合力强的特性,表面金属层多选择电导率高、不易氧化的金属。

薄膜法金属化层均匀,金属化层质量高,结合强度高,但是设备投资大,难以进行规模化生产。

厚膜法

厚膜金属化法是在氮化铝陶瓷基板上通过丝网印刷等技术在陶瓷表面按预先设计好的样式覆盖上一层厚膜浆料,经烧结得到可以满足不同需求的钎焊金属层、电路及引线接电等。厚膜浆料一般包括永久粘结剂、有机载体和金属粉末,经球磨混炼而成,粘结剂一般是玻璃料或金属氧化物或是二者的混合物,其作用是连结陶瓷与金属并决定着厚膜浆料对基体陶瓷的附着力,是厚膜浆料制作的关键。有机载体的作用主要是分散功能相和粘结相,同时使厚膜浆料保持一定的粘度,为后续的丝网印刷做准备,在烧结过程中会逐渐挥发。金属粉末是厚膜浆料中的核心物质,在经过热处理后在陶瓷表面形成金属层,从而实现陶瓷的表面金属化。

由于氮化铝的活泼性强,所以不能套用已经较为成熟的陶瓷厚膜金属化使用的浆料,否则会导致产生气泡缺陷。厚膜法工艺简单,方便小批量化生产,且导电性能好,但结合强度不够高,且受温度影响大。

高熔点金属化法

高熔点金属法也称为Mo-Mn法,是以难熔金属粉Mo为主,再加入少量低熔点Mn的金属化配方,加入粘结剂涂覆到陶瓷表面,然后烧结形成金属化层。这个方法主要应用在Al2O3的金属化中,如要在AlN表面使用该方法则需要在AlN陶瓷表面预先氧化处理上一层Al2O3,以便于与金属粉末反应。

高熔点金属化法制备得到的金属覆盖层与陶瓷基体结合力较强,但获得的金属膜表面直接焊接比较困难,且导电性不理想,耗能大。

直接覆铜法

直接覆铜法是在AlN陶瓷表面键合铜箔的一种金属化方法,它是随着板上芯片封装技术的兴起而发展出来的一种新型工艺。其基本原理是在Cu与陶瓷之间引进氧元素,然后在1065~1083℃时形成Cu/O共晶液相,进而与陶瓷基体及铜箔发生反应生成Cu(AlO2)2,并在中间相的作用下实现铜箔与基体的键合。因 AlN属于非氧化物陶瓷,其表面敷铜的关键在于在其表面形成一层Al2O3过渡层,并在过渡层的作用下实现铜箔与基体陶瓷的有效键合。

直接覆铜法导热性好,附着强度高,机械性能好,易于大规模生产,但氧化工艺条件不易控制。

化学镀法

化学镀法是利用还原剂将溶液中的金属离子还原在催化活性的物体表面而形成金属镀层。化学镀法基体表面的粗糙度对镀层的粘附强度有很大的影响,并且在一定范围内,结合强度随着基片表面的粗糙度增大而提高。因此化学镀法的关键工艺是对AlN陶瓷进行表面粗糙化处理。

化学镀法成本较低,适应于大规模生产,但是结合强度较低,特别是在高温环境下的结合强度特别低,所以只适用于那些对结合强度要求不是很高的行业。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 覆铜
    +关注

    关注

    0

    文章

    59

    浏览量

    12627
  • 陶瓷基板
    +关注

    关注

    5

    文章

    261

    浏览量

    12316

原文标题:氮化铝陶瓷基板的金属化工艺

文章出处:【微信号:中科聚智,微信公众号:中科聚智】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    AMB覆铜陶瓷基板迎爆发期,氮化硅需求成增长引擎

    原理是在高温真空环境下,利用含有钛、锆、铪等活性元素的金属焊料,与氮化铝(AlN)或氮化硅(Si₃N₄)陶瓷表面发生化学反应,生成可被液态钎料润湿的稳定反应层,从而将纯铜箔牢固焊接在
    的头像 发表于 12-01 06:12 4156次阅读

    高频混压板层压工艺

    工艺流程 基材预处理‌ 陶瓷基板需经激光打孔、表面金属化(金/银/铜层)及活化处理,确保粘接强度‌;FR-4基板则通过棕
    的头像 发表于 10-26 17:34 832次阅读
    高频混压板层压<b class='flag-5'>工艺</b>

    第三代半导体崛起催生封装材料革命:五大陶瓷基板谁主沉浮?

    完整性。传统有机基板已难堪重任,先进陶瓷材料正在这一领域展开激烈角逐,下面深圳金瑞欣小编来为大家讲解一下: 一、五大陶瓷基板性能大比拼 氧化铝
    的头像 发表于 10-22 18:13 155次阅读
    第三代半导体崛起催生封装材料革命:五大<b class='flag-5'>陶瓷</b><b class='flag-5'>基板</b>谁主沉浮?

    解决镀金氮化铝切割崩边与分层难题,就选BJX-3352精密划片机

    在高端半导体封装、功率器件以及微波射频领域,镀金氮化铝基板因其优异的导热性、电绝缘性和稳定的金属化性能而备受青睐。然而,其“硬脆基材+软质镀层”的复合结构,也给后续的精密切割带来了巨大挑战
    的头像 发表于 10-14 16:51 359次阅读
    解决镀金<b class='flag-5'>氮化铝</b>切割崩边与分层难题,就选BJX-3352精密划片机

    如何解决陶瓷管壳制造中的工艺缺陷

    陶瓷管壳制造工艺中的缺陷主要源于材料特性和工艺控制的复杂性。在原材料阶段,氧化铝氮化铝粉体的粒径分布不均会导致烧结体密度差异,形成显微裂纹
    的头像 发表于 10-13 15:29 516次阅读
    如何解决<b class='flag-5'>陶瓷</b>管壳制造中的<b class='flag-5'>工艺</b>缺陷

    从DBC到AMB:氮化铝基板金属化技术演进与未来趋势

    ,AlN陶瓷的强共价键特性导致其与金属材料的浸润性较差,这给金属化工艺带来了巨大挑战。下面由金瑞欣小编介绍当前氮化铝
    的头像 发表于 09-06 18:13 822次阅读
    从DBC到AMB:<b class='flag-5'>氮化铝</b><b class='flag-5'>基板</b><b class='flag-5'>金属化</b>技术演进与未来趋势

    热压烧结氮化陶瓷逆变器散热基板

    氮化陶瓷逆变器散热基板在还原性气体环境(H2, CO)中的应用分析 在新能源汽车、光伏发电等领域的功率模块应用中,逆变器散热基板不仅面临高热流密度的挑战,有时还需耐受如氢气(H2)、
    的头像 发表于 08-03 11:37 1196次阅读
    热压烧结<b class='flag-5'>氮化</b>硅<b class='flag-5'>陶瓷</b>逆变器散热<b class='flag-5'>基板</b>

    氮化陶瓷基板:新能源汽车电力电子的散热革新

    组合,正在成为新一代电力电子封装的首选材料,下面由深圳金瑞欣小编来为大家讲解一下:   一、从“配角”到“C位”:氮化硅的逆袭 传统氧化铝(Al?O?)基板工艺成熟、价格低廉,却在高
    的头像 发表于 08-02 18:31 4205次阅读

    氮化铝陶瓷散热片在5G应用中的关键作用

    随着5G技术的飞速发展,高频、高速、高功率密度器件带来了前所未有的散热挑战。传统金属及普通陶瓷材料已难以满足核心射频单元、功率放大器等热管理需求。氮化铝(AlN)陶瓷凭借其卓越的综合性
    的头像 发表于 08-01 13:24 1350次阅读
    <b class='flag-5'>氮化铝</b><b class='flag-5'>陶瓷</b>散热片在5G应用中的关键作用

    氮化陶瓷逆变器散热基板:性能、对比与制造

    氮化硅(Si₃N₄)陶瓷以其卓越的综合性能,成为现代大功率电子器件(如IGBT/SiC模块)散热基板的理想候选材料。
    的头像 发表于 07-25 17:59 1228次阅读
    <b class='flag-5'>氮化</b>硅<b class='flag-5'>陶瓷</b>逆变器散热<b class='flag-5'>基板</b>:性能、对比与制造

    从氧化铝氮化铝陶瓷基板材料的变革与挑战

    在当今电子技术飞速发展的时代,陶瓷基板材料作为电子元器件的关键支撑材料,扮演着至关重要的角色。目前,常见的陶瓷基板材料主要包括氧化铝(Al2
    的头像 发表于 07-10 17:53 1212次阅读
    从氧<b class='flag-5'>化铝</b>到<b class='flag-5'>氮化铝</b>:<b class='flag-5'>陶瓷</b><b class='flag-5'>基板</b>材料的变革与挑战

    氮化硅AMB陶瓷覆铜基板界面空洞率的关键技术与工艺探索

    在现代电子封装领域,氮化硅(Si?N?) AMB陶瓷覆铜 基板凭借其卓越的热导率、低热膨胀系数以及优异的电气绝缘性能,逐渐成为高端电子设备的关键材料。然而,铜/陶瓷界面的空洞率问题却成
    的头像 发表于 07-05 18:04 1877次阅读

    电子封装中的高导热平面陶瓷基板金属化技术研究

    随着大功率器件朝着高压、高电流以及小型化的方向发展,这对于器件的散热要求变得更为严格。陶瓷基板因其卓越的热导率和机械性能,被广泛应用于大功率器件的封装工艺中。
    的头像 发表于 05-03 12:44 3151次阅读
    电子封装中的高导热平面<b class='flag-5'>陶瓷</b><b class='flag-5'>基板</b>及<b class='flag-5'>金属化</b>技术研究

    氮化铝陶瓷基板:高性能电子封装材料解析

    系统)以及高温稳定(如航空航天和工业设备)等领域。生产工艺包括原料制备、成型、烧结和后处理等步骤,原料纯度是关键。氮化铝陶瓷基板市场需求不断增加,未来发展趋势是更高性能、更低成本和更环
    的头像 发表于 03-04 18:06 1473次阅读
    <b class='flag-5'>氮化铝</b><b class='flag-5'>陶瓷</b><b class='flag-5'>基板</b>:高性能电子封装材料解析

    陶瓷基板脉冲电镀孔技术的特点

      陶瓷基板脉冲电镀孔技术是利用脉冲电流在电极和电解液之间产生电化学反应,使电解液中的金属离子在电场作用下还原并沉积在陶瓷线路板的通孔内,从而实现孔壁
    的头像 发表于 01-27 10:20 1531次阅读
    <b class='flag-5'>陶瓷</b><b class='flag-5'>基板</b>脉冲电镀孔技术的特点