0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于视觉伺服的工业机器人系统研究

jf_AHleW45b 来源:旺材伺服与运动控制 2023-02-06 15:24 次阅读

常见的机器人视觉伺服中要实现像素坐标与实际坐标的转换,首先就要进行标定,对于实现视觉伺服控制,这里的标定不仅包括摄像机标定,也包括机器人系统的手眼标定。 以常见的焊接机器人系统为例,有两种构型,如下:

pYYBAGPgqzuASJjpAAA2zO46UFE251.jpg

即:摄像机固定于机器手和摄像机固定于外部场景;

本文针对前一种构型:摄像机固定于机器手。

1、摄像机标定技术

(1)理论部分:

以张正友的棋盘标定法为摄像机标定方式,由于摄像机标定结果要用到后面的手眼标定中,所以此处进行不同方位的棋盘图片拍摄时需要遵守:标定板固定位置不动,手眼组合体变换姿态拍摄图片。

摄像机标定的目的:得到两组坐标系的两两转化矩阵:T1和T2;

1)得到图片像素坐标系P与摄像机坐标系C之间的转换矩阵T1,准确说应该是摄像机坐标系转化为图片像素坐标系的转换矩阵。 可表示为:

P=T1*C;

解释:T1在摄像机标定结果中就是内参矩阵3x3;

2)得到摄像相机坐标系C与棋盘上建立的世界坐标系G之间的转换矩阵T2,准确说应该是坐标系G转化为摄像机坐标系的转换矩阵。 可表示为:

C=T2*G;

解释:T2在摄像机标定结果中就是外参矩阵4x4,由旋转矩阵r和平移向量t构成[ t r; 0 0 0 1];

(2)方法:

摄像机标定方法有两种可选:openCV或者Matlab标定工具箱;

建议选择MATLAB应用程序——图像处理与计算机视觉——Camera Calibrator,直接导入拍摄好的图片即可。 但是要注意,使用matlab标定工具箱所得到的内参矩阵、外参旋转矩阵、外参平移向量都要经过转置才是正确的结果。

如下图,MATLAB标定得到的红框中依次是外参平移向量、内参矩阵、外参旋转矩阵,它们都需要做转置后才能应用于本文的公式计算:

poYBAGPgqzyAPbDIAACcZ7P7vnk502.jpg

2、手眼标定技术

(1)理论部分:

手眼标定目的:得到摄像机坐标系C与机器手(或工具)坐标系H之间的转换矩阵T3,准确说应该是机器手坐标系转化为摄像机坐标系的转化矩阵。 可表示为:

C=T3*H;

解释:T3需要根据公式CX=XD得到; 实际中,分别知道C、D求出来的X有无穷多个解。 所以为了实现唯一解,我们至少需要两组C和D,即至少需要3个位置的摄像机标定结果。

其中C的求法如下:

C是两个摄像机坐标系之间的变换矩阵。 可以根据上述任一两张标定图片所得的两个摄像机标定外参A、B按公式C=A*inv(B)计算得到的。 假设上述摄像机标定中有3张标定图片的外参标定结果分别是T21、T22、T23,那么可以得到两个C矩阵:

C1=T21*inv(T22);

C2=T22*inv(T23);

D的求法如下:

D是两个机器手坐标系之间的变换矩阵。 假设上述摄像机标定中的3张标定图片所一一对应的机器手坐标系在基坐标系(也可以是工件坐标系或者其他固定的参考坐标系)中的描述矩阵结果分别是H1、H2、H3(H需要从机器人控制器或示教器中读取),那么可以得到两个D矩阵:

D1=inv(H1)*H2;

D2=inv(H2)*H3;

由以上两组C和D,代入CX=XD就可以得到唯一解X,从而T3=X;

注:上述H1、H2、H3是每张标定图片对应的机器手坐标系描述矩阵,正好说明了摄像机标定中所谓的“标定板固定,手眼运动”的正确性。 如果手眼不动,改变标定板姿态进行拍摄,那么H的值都是一样的。

(2)方法:

1)根据摄像机标定已知摄像机外参矩阵T21、T22、T23,还要从机器人控制器中读取T21、T22、T23分别对应的机器手(或工具)坐标系H1、H2、H3。 控制器中的坐标系描述矩阵不是直接读取的,它是以平移向量和欧拉角(或四元数)模式存在的,如下:

平移向量+欧拉角模式:

poYBAGPgqzuAXKVjAADWsbEQzqg008.jpg

平移向量+四元数模式:

pYYBAGPgqzyARD5YAAC7fh8YxpM935.jpg

选取其中任一模式即可,然后将其转化为描述矩阵。

上述工作完成后,就已经获取了3个外参矩阵(再次提醒,摄像机标定使用MATLAB标定工具箱的话,所得到的外参旋转矩阵和平移向量先要转置,即R=r',T=t',然后外参矩阵EX=[R T; 0 0 0 1])和 3个机械手坐标系矩阵,因此可以分别将3个二维矩阵合为一个三维矩阵,matlab命令如下:

C_ext=cat(3, C_ext1, C_ext2, C_ext3);

H=cat(3, H1, H2 ,H3)

最后将C_ext和H作为参数代入到如下MATLAB函数中:

function Tch = GetCamera2HandMatrix(C_ext,H)% 以下变量:% C_ext是3个位置的摄像机外参矩阵:3x4x4% H1、H2、H3分别是3个位置的机械手坐标系的姿态矩阵:3x4x4% Tcg--机器手坐标系(或工具坐标系)在摄像机坐标系中的姿态和位置变换矩阵% C1、D1、C2、D2、R、w、q、kc1、kc2、kc3、kd1、kd2、kd3、a、b、c、d、h、y均为临时变量 C1=C_ext(:,:,1)*inv(C_ext(:,:,2)) C2=C_ext(:,:,2)*inv(C_ext(:,:,3)) D1=inv(H(:,:,1))*H(:,:,2) D2=inv(H(:,:,2))*H(:,:,3) R=C1(1:3,1:3); q=acos((trace(R)-1)/2); w(1,1)=q/(2*sin(q))*(R(3,2)-R(2,3)); w(2,1)=q/(2*sin(q))*(R(1,3)-R(3,1)); w(3,1)=q/(2*sin(q))*(R(2,1)-R(1,2)); kc1=w; R=C2(1:3,1:3); q=acos((trace(R)-1)/2); w(1,1)=q/(2*sin(q))*(R(3,2)-R(2,3)); w(2,1)=q/(2*sin(q))*(R(1,3)-R(3,1)); w(3,1)=q/(2*sin(q))*(R(2,1)-R(1,2)); kc2=w; R=D1(1:3,1:3); q=acos((trace(R)-1)/2); w(1,1)=q/(2*sin(q))*(R(3,2)-R(2,3)); w(2,1)=q/(2*sin(q))*(R(1,3)-R(3,1)); w(3,1)=q/(2*sin(q))*(R(2,1)-R(1,2)); kd1=w; R=D2(1:3,1:3); q=acos((trace(R)-1)/2); w(1,1)=q/(2*sin(q))*(R(3,2)-R(2,3)); w(2,1)=q/(2*sin(q))*(R(1,3)-R(3,1)); w(3,1)=q/(2*sin(q))*(R(2,1)-R(1,2)); kd2=w; kc3=cross(kc1,kc2); kd3=cross(kd1,kd2); a=[kc1 kc2 kc3]; b=[kd1 kd2 kd3]; R=a*inv(b); %得到旋转关系矩阵 tc1=C1(1:3,4); tc2=C2(1:3,4); td1=D1(1:3,4); td2=D2(1:3,4); c=R*td1-tc1; d=R*td2-tc2; a=C1(1:3,1:3)-[1 0 0;0 1 0;0 0 1]; b=C2(1:3,1:3)-[1 0 0;0 1 0;0 0 1]; h=[a;b]; y=[c;d]; t=inv(h'*h)*h'*y; %得到平移关系矩阵 Tch=[R t;0 0 0 1]; %得到最终结果end

3、根据标定结果对固定高度目标实现单目定位

(1)理论部分:

由上述1、2两个标定已经得到:

摄像机坐标系C->像素坐标系P的转换矩阵Tpc(即内参矩阵,MATLAB标定得到的要转置);

机械手(或工具)坐标系H->摄像机坐标系C的转化矩阵Tch;

从控制器读取的机械手(或工具)坐标系H->基坐标系B(这个根据情况自己在控制器设定是基坐标还是工件坐标系,本文用基坐标系)的转化矩阵Tbh;

已知目标高度固定,为z;

那么基坐标系转化为像素坐标系的变换矩阵就是:Gpb=TpcTchinv(Tbh);

根据Gpb和z可以得到如下图所示的变换过程,分解后可根据像素坐标(u,v)求得实际坐标(x,y,z):

pYYBAGPgqzyASz13AAAok7DvyTg400.jpg

其中,Tpc需要注意,应在内参矩阵最后添加一个全零列,变为3x4矩阵,如下:

poYBAGPgqzyAYyEZAAAwSGKyQHg416.jpg

(2)代码实现:

function P= GetObjectLocation( u,v,Gtb)% 参数(u,v)为目标在图片中的像素坐标% 参数Gtb是工具在机器人基坐标中的描述矩阵(也就是工具坐标系->基坐标系的变换矩阵) %内参矩阵 Kl=[ 1851 9.7 550.5 0; 0 1844.4 299.7 0; 0 0 1.0 0]; %摄像机与工具关系矩阵 Gctl= [-0.9620 -0.2974 0.0156 -2.6405; 0.3266 -0.9552 0.0056 59.7141; 0.0130 0.0003 1.0161 145.3381; 0 0 0 1.0000]; G=inv(Gtb); z=10; %指定物体的高度 M=Kl*Gctl*G; Ml=[u*M(3,1)-M(1,1) u*M(3,2)-M(1,2) ; v*M(3,1)-M(2,1) v*M(3,2)-M(2,2)]; Mr=[M(1,4)-u*M(3,4)-(u*M(3,3)-M(1,3))*z; M(2,4)-v*M(3,4)-(v*M(3,3)-M(2,3))*z]; P=inv(Ml)*Mr; %得到物体的位置。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • matlab
    +关注

    关注

    175

    文章

    2924

    浏览量

    228463
  • 机器人
    +关注

    关注

    206

    文章

    27046

    浏览量

    201430
  • 摄像机
    +关注

    关注

    3

    文章

    1421

    浏览量

    59000
  • 工业机器人
    +关注

    关注

    90

    文章

    3263

    浏览量

    91902
  • 视觉伺服
    +关注

    关注

    0

    文章

    11

    浏览量

    7804

原文标题:基于视觉伺服的工业机器人系统研究

文章出处:【微信号:旺材伺服与运动控制,微信公众号:旺材伺服与运动控制】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    LabVIEW的六轴工业机器人运动控制系统

    系统研究与算法开发:首先,项目围绕机器人的数学模型,特别是空间位姿描述和D-H模型展开研究。在此基础上,开发了机器人的运动学正反解算法,使用了雅克比-迭代法等先进技术。此外,还涉及
    发表于 12-21 20:03

    一种小型移动机器人的控制系统研究

    一种小型移动机器人的控制系统研究
    发表于 08-20 15:53

    什么是工业机器人

    机器人在美国诞生,开创了机器人发展的新纪元。戴沃尔提出的工业机器人有以下特点:将数控机床的伺服轴与遥控操纵器的连杆机构联接在一起,预先设定的
    发表于 01-19 10:58

    视觉机器人的发展现状与趋势

    安全,对一些特殊工种,如喷涂,铸造等通过劳动法强制采用工业机器人来代替,这样可以大大增加工业机器人的需求数量。视觉
    发表于 09-08 10:34

    工业机器人的产业链

    工业机器人的产业链分为上游核心零部件,中游本体和传感器等生产,以及下游的系统集成等。核心零部件是减速机、伺服系统、控制系统三部分,分别对应执
    发表于 08-23 15:10

    LabVIEW 的Tripod 机器人视觉处理和定位研究

    针对传统的物流分拣过程效率低、成本高的现状以及利用机器视觉进行分拣快速、可靠的优点对机器视觉、图像处理和Tiropd机器人进行了
    发表于 06-01 06:00

    基于图像的机器人视觉伺服系统该怎么设计?

      制造出像一样具有智能的能替代人类劳动的机器人,一直是人类的梦想,人类获取的信息80%以上是通过视觉。因此,在智能机器人研究中,具有
    发表于 09-27 08:07

    服务机器人视觉系统怎么设计?

    跟踪等领域。不同种类的机器人由于工作的重点不一样,它的视觉系统在软件或硬件上都有着细微的差别。本文研究基于服务机器人的单目视觉系统。它处理的
    发表于 04-07 07:27

    机器人视觉机器视觉有什么不一样?

    工程领域,它也是一门有自己特定的研究领域的科学,区别于纯计算机视觉研究机器人视觉必须将机器人
    发表于 08-28 10:48

    四元数数控:工业机器人使用机器视觉系统的原因

    和提高工作效率,就必须引入机器视觉技术来实现对目标的识别和定位。目前,装备了机器视觉系统工业机器人
    发表于 04-29 09:42

    工业机器人视觉实训平台介绍

    、抓取、装配、入库等训练,2、工业机器人视觉实训平台包含六自由度工业机器人、智能视觉检测
    发表于 07-01 06:38

    工业机器人与智能视觉系统应用实训平台介绍

    ZNAI-1工业机器人与智能视觉系统应用实训平台一、产品概述工业机器人与智能视觉系统应用实训平台
    发表于 07-01 11:48

    ZN-1AI工业机器人与智能视觉系统应用实训平台介绍

    ZN-1AI工业机器人与智能视觉系统应用实训平台一、产品概述 ZN-1AI以工业机器人机器
    发表于 07-01 10:07

    工业机器人视觉装配实训平台实验

    ZNH-JR05Z型 工业机器人视觉装配实训平台一、概述ZNH-JR05Z型 工业机器人视觉装配
    发表于 07-01 12:05

    机器人视觉系统研究

    视觉系统成为研究的新课题。1965年, Stanford建立机器人实验室开始研究机器人机器人
    发表于 09-07 08:37