0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

伺服泵控系统的原理与应用

jf_AHleW45b 来源:旺材伺服与运动控制 2023-01-30 14:15 次阅读

对液压设备而言,各个阶段需要的压力和流量是不同的,整个过程是处于不断变化的负载状态,而目前系统绝大部分使用恒速恒压泵组,且工作过程中异步电机一直处于工频运转。对于部分工艺环节只需极小流量,因此,多余的液压油只能通过高压溢流回到油箱(变量泵也不能做到绝对零排量,因泵自身润滑需要,最低也会有标称流量的5%左右的溢流),造成了能源的大大浪费,同时也大大降低了电机的工作效率。据统计:由高压溢流造成的能量损失高达30%~80%。

伺服油泵液压系统现用的开环变量泵系统的主要区别是:动力源不同。开环变量泵液压系统的动力源是三相电动机驱动开环变量泵,而伺服油泵液压系统的动力源则是用伺服电机驱动油泵(齿轮泵或柱塞泵),液压系统的核心部分 —— 动力源的改变,意味着液压系统的控制和性质发生了本质的变化。本文将详细叙述伺服油泵的工作原理及其性能,并将其性能与变量泵性能做一对比。

伺服油泵是由伺服电机驱动的,伺服电机属于控制电机的范畴,其主要功能是传递和转换信号,如伺服电机将电压信号转换为转矩和转速等等。对控制电机的主要要求:动作灵敏准确、运行可靠、耗电少等,也适用于伺服电机。

在液压系统中,泵的输出功率为 W=P*Q ,式中, P 为泵输出压力, Q 为泵输出流量,从该表达式中可以看出,改变泵的输出压力或输出流量,均可改变泵的输出功率。我们知道,液压系统各个执行机构动作所需的功率不一样,而且变化较大,若能使泵的输出功率与负载功率相匹配,则可达到节省能源的效果。不难看出,在负载一定的情况下,在定量泵液压系统中,由于泵输出的流量是一定值,但负载有速度要求,所以一部分流量需从主溢流阀流回油箱,这就是我们常说的溢流损耗。另外,由于用比例节流阀做调速回路,所以又存在节流损耗。在开环变量泵液压系统中,由于有斜盘改变泵出口的大小,从而改变了泵输出流量的大小,所以没有溢流损耗,但是,开环变量泵在流量控制状态下也存在着节流损耗,所以,开环变量泵的调速回路是容积 —— 节流调速回路。闭环变量泵由于其是用一比例减压阀或比例伺服阀控制斜盘活塞,使斜盘保持一定的开口,当泵输出压力达到预定压力(由压力传感器监测)时,泵切换至压力控制状态,所以,闭环变量泵既无溢流损失,也无节流损失。

对变量泵(开环或闭环)液压系统而言,它有以下必要特性: 一 液压系统构成必要特性: A 节能;B 压力、流量比例控制;C 动作高响应。 二 液压泵必要特性: A 容积调速(流量可变);B 高机械效率;C 压力控制状态和流量控制状态能顺畅地切换。 同样,对于伺服油泵液压系统而言,它也应该有它的必要特性。我们可以先对伺服电机的工作原理做一番了解,这有助于我们导出伺服油泵液压系统的必要特性。

交流伺服电机通常都是单相异步电机,有鼠笼形转子和杯形转子两种结构形式。与普通电机一样,交流伺服电机也由定子和转子构成。定子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间相差 90 °电角度。笼型转子交流伺服电机的转子和普通三相笼式电机相同。在这里我们以杯形转子交流伺服电机为例,其结构如图一:

cbd4b986-a062-11ed-bfe3-dac502259ad0.png

杯形转子交流伺服电机的结构如图由外定子,杯形转子和内定子脉冲计数装置四部分组成。转子由非磁性导电材料(如铜)制成,内定子仅作磁路用。这类交流伺服电机转动惯量很小。交流伺服电机的工作原理和单相感应电动机无本质上的区别。但是,交流伺服电机必须具备一重要特性:可控性。即无控制信号时,它不应转动,特别是当它已在转动时,如果控制信号消失,它应能立即停止转动。在控制绕组加控制电压( U 2 )的情况下,励磁绕组和电容串联,产生两相旋转磁场,适当选择电容的大小,可使通入两个绕组的电流相位差接近 90,因此便产生旋转磁场,这个旋转磁场可以看成是由两个圆形旋转磁场合成起来的。这两个圆形旋转磁场幅值不等,但以相同的速度,向相反的方向旋转。它们切割转子绕组感应的电势和电流以及产生的电磁力矩也方向相反、大小不等(正转者大,反转者小)合成力矩不为零,所以伺服电机就朝着正转磁场的方向转动起来,随着信号( U 2 )的增强,磁场接近圆形,此时正转磁场及其力矩增大,反转磁场及其力矩减小,合成力矩变大,如负载力矩不变,转子的速度就增加。如果改变 U 2 的相位,即移相 180 o (极性改变),旋转磁场的转向相反,因而产生的合成力矩方向也相反,伺服电机将反转。若控制信号消失,只有励磁绕组通入电流( I 1 ),伺服电机产生的磁场将是脉动磁场,脉动磁场分成的正反向旋转磁场产生的转距 T 、 T 的合成转矩 T 的方向与旋转方向相反,所以电机在控制绕组电压为零时,能立即停止,体现了控制信号的作用,如图二所示。

cbfc64fe-a062-11ed-bfe3-dac502259ad0.png

通常交流伺服电机的转子电阻特别大,使它的临界转差率大于 1 。这样使伺服电机启动迅速,而且稳定运行范围大。

控制电压大小变化时,转子转速相应变化,转速与电压成正比。控制电压的极性改变时,转子的转向也将改变。图三是交流伺服电动机的机械特性曲线。

cc205134-a062-11ed-bfe3-dac502259ad0.png

图三:交流伺服电动机的机械特性曲线

可以看出:普通的两相和三相异步电动机正常情况下都是在对称状态下工作,不对称运行属于故障状态。而交流伺服电机则可以靠不同程度的不对称运行来达到控制目的。这是交流伺服电机在运行上与普通异步电动机的根本区别。

所以,伺服电动机的作用是驱动控制对象。被控对象的转距和转速受信号电压控制,信号电压的大小和极性改变时,电动机的转动速度和方向也跟着变化。现在我们可以导出伺服油泵液压系统的必要特性: 一 液压系统构成必要特性: A 节能;B 动作高响应。

二 液压泵必要特性: A 变速控制;B 高机械效率。 三 伺服电机必要特性 A 高响应;B 高效率; C 低速时大转矩 四 适应性 A 压力流量比例控制;B 控制对象能顺畅地切换。

伺服油泵液压系统的控制原理:图四是伺服油泵液压系统简图。该系统也有两种工作状态:流量控制状态和压力控制状态。在流量控制状态下,压力传感器所监测到的压力小于设定的压力,伺服马达按流量控制状态工作,即控制伺服马达的转速,使泵的输出流量保持在设定值。流量控制状态时,泵处于流量闭环控制状态。在压力控制状态下,压力传感器所监测到的压力将达到或达到设定值时,伺服马达按压力控制状态工作,即控制伺服马达的转速至最小,仅向系统控制泄漏或保压所需的流量。此时泵处开压力闭环控制状态。

cc3df806-a062-11ed-bfe3-dac502259ad0.png

图四:伺服油泵液压系统简图 为什么伺服油泵系统比变量泵(即使是闭环变量泵)系统更节省电力?1 伺服油泵的马达效率高。2 伺服油泵在从保压状态到最大排出量时能节省更多的电力。3 内控型变量泵必需在 14bar 左右时才能处于可控状态,而伺服油泵则可以在 1bar 压力下工作。其中,伺服马达的性能对省电性能直接的影响。引入磁阻扭矩和含有稀士元素的永磁铁技术会使伺服油泵的节电性能更好。

由于伺服油泵所输出的压力、流量可以闭环控制,所以它的压力重复精度好,而且在低压力下也可以可靠的工作。伺服油泵所输出的流量是靠数字信号来控制的,有很好的线性和低速可控性,其流量的重复精度也较高。

另外,伺服油泵所产生的噪音也较变量泵低。

然而伺服油泵也有它的缺点。在变量泵系统中,在保压时不会担心电机的输出扭矩不同,因为电机的功率没有改变;伺服油泵在保压时转速减小,其输出扭矩必然减小,所以,伺服油泵的伺服马达必需是专用的、并且在低速时有较大扭矩输出。另外,伺服油泵对电源的要求比较高,即使在变动幅 10% 以内,特别是在正侧变动时,由于主机运转条件、负荷条件,也会有超负荷报警的可能。负荷容积较大且在高压维持状态下,如果忽然断电,可能会造成控制器的损坏。

下表是伺服油泵与变量泵系统的性能对比:

cc537ba4-a062-11ed-bfe3-dac502259ad0.png

可以看出,伺服油泵在压力、流量的响应时间上比开环泵略高,其余均远优于开环变量泵。伺服油泵的优点十分很突出:节电最高可达 70% ;低速、低压控制可靠;有较好的重复精度。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 伺服电机
    +关注

    关注

    82

    文章

    1839

    浏览量

    56295
  • 变量
    +关注

    关注

    0

    文章

    597

    浏览量

    28114
  • 液压系统
    +关注

    关注

    12

    文章

    142

    浏览量

    15602

原文标题:伺服泵控系统的原理与应用

文章出处:【微信号:旺材伺服与运动控制,微信公众号:旺材伺服与运动控制】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    天拓四方智能边缘计算网关如何实现SINAMICS S200伺服远程调试

    是西门子推出的新一代伺服驱动系统,采用Motion Connect 350/380 电缆连接 SIMOTICS S-1FL2伺服电机,与 SIMATIC 控制器配套使用,可以实现位置控制、速度控制和扭矩
    的头像 发表于 04-19 16:20 138次阅读
    天拓四方智能边缘计算网关如何实现SINAMICS S200<b class='flag-5'>伺服</b>远程调试

    伺服系统故障引起的抖动及处理方法

    速度环参数设置不当也是导致伺服电机抖动的一个常见原因。速度环积分增益、速度环比例增益和加速度反馈增益等参数的设定直接影响到电机的运行稳定性。
    发表于 03-25 14:54 144次阅读
    <b class='flag-5'>伺服系统</b>故障引起的抖动及处理方法

    交流伺服系统的应用分析(驱动和机械连接选择 | 机械设计应用特征功能选择)

    一、前言 目前,基于稀土永磁体的交流永磁伺服驱动系统,能提供最高水平的动态响应和扭矩密度。所以拖动系统的发展趋势是用交流伺服驱动取替传统的液压、直流、步进和AC变频调速驱动,以便使
    的头像 发表于 03-08 08:37 139次阅读

    数控伺服系统的ADAMS/MATLA联合仿真研究

     利用伺服进给系统虚拟[1]样机提供的集成环境对机械系统和电机控制系统进行联合仿真[2]分析,是一种全新的设计方法。在传统的复杂机械系统[3
    发表于 01-19 14:48 170次阅读
    数控<b class='flag-5'>伺服系统</b>的ADAMS/MATLA联合仿真研究

    MODBUS转PROFINET网关与全数字交流伺服配置案例

    本案例是用MODBUS转PROFINET网关连接全数字交流伺服驱动系统与PLC的配置案例,用到设备为西门子S7-1200PLC,开疆MODBUS转PROFINET网关,全数字交流伺服驱动系统
    的头像 发表于 01-09 14:13 155次阅读
    MODBUS转PROFINET网关与全数字交流<b class='flag-5'>伺服</b>配置案例

    影响伺服系统性能的因素有哪些

    在整个运动控制系统的设计中,建议使用者尽可能采用同一厂家的产品,包括运动控制器、驱动器、伺服电机等,保证系统的成套性,因为这样能够避免如连线、配置、通信等方面的问题。
    发表于 12-11 09:58 704次阅读
    影响<b class='flag-5'>伺服系统</b>性能的因素有哪些

    西门子伺服驱动系统SINAMICS S200概览

    SINAMICS S200 伺服系统是面向标准伺服市场的新一代伺服驱动系统。它是一款单轴AC/AC伺服系统,设计紧凑,动态性能高,易于使用,
    发表于 10-12 15:32 1198次阅读
    西门子<b class='flag-5'>伺服</b>驱动<b class='flag-5'>系统</b>SINAMICS S200概览

    西门子发布新一代伺服驱动系统SINAMICS S200 PN系列

    SINAMICS S200 PN系列采用了支持PROFINET IRT的控制器以及快速的电流控制器,大幅提升动态响应性能。高过载能力能够轻松应对较高扭矩峰值,有助于提高生产力。该系统还配备高分辨率的编码器,能够响应微小的速度或位置偏差,即使是苛刻的应用条件下,也能实现平稳、精确的控制。
    发表于 09-08 11:23 741次阅读

    贴片机X-Y伺服定位系统分辨率

    每个轴的读取头经过光栅尺反射回一束光柱,当光柱返回读取头时,产生一个正弦波模拟电压曲线。当读取头通过光栅尺上的数据线时,由于数据线与光柱干涉,读取头电压发生改变。与其他编码器一样,读取头都有“A”相和“B”相,两者相位差90°
    发表于 09-05 15:44 195次阅读
    贴片机X-Y<b class='flag-5'>伺服</b>定位<b class='flag-5'>系统</b>分辨率

    伺服系统原理及分类

    伺服系统主要由伺服控制器、驱动电路、伺服电动机及相应反馈检测器件组成。1.伺服系统原理当人为的给定控制信号并被伺服控制
    的头像 发表于 08-27 08:08 1965次阅读
    <b class='flag-5'>伺服系统</b>原理及分类

    什么是编码器,它如何提高逆变器和电机驱动系统的性能?

    在过去的几十年里,从传统的并网电机向逆变器驱动电机的过渡一直在稳步、持续地进行。这是工业旋转设备的重大转型,通过提高电机和终端设备的使用效率,不仅实现了工艺改进,还能节省大量能源。变速驱动器和伺服
    的头像 发表于 08-09 08:09 458次阅读
    什么是编码器,它如何提高逆变器和电机驱动<b class='flag-5'>系统</b>的性能?

    伺服电机抱闸系统概述

    今天我们介绍伺服电机抱闸系统,在伺服系统控制中,抱闸一般不是经常使用,伺服电机本身制动性能比较好。   对于220V抱闸系统,抱闸控制
    的头像 发表于 07-04 15:51 1869次阅读
    <b class='flag-5'>伺服</b>电机抱闸<b class='flag-5'>系统</b>概述

    浅谈SEW伺服电机的基础知识

    SEW伺服驱动系统伺服减速电机和伺服变频器组成,伺服电机分为同步伺服(DS,DY,CM)和异步
    发表于 07-03 14:58 951次阅读
    浅谈SEW<b class='flag-5'>伺服</b>电机的基础知识

    伺服系统控制架构解析及应用

    随着计算机控制技术、现代电机调速技术、通讯技术的飞速发展,我们迎来了数字化工厂时代。 在数字化工厂方案中,作为柔性制造的终端设备,加工中心、数控机床等已经成为数字工厂必不可少的载体。
    的头像 发表于 05-31 14:02 1302次阅读
    <b class='flag-5'>伺服系统</b>控制架构解析及应用

    步进电机驱动器细分解析

    步进电机是一种开环伺服运动系统执行元件,以脉冲方式进行控制,输出角位移。与交流伺服电机及直流伺服电机相比,其突出优点就是价格低廉,并且无积累误差。但是,步进电机运行存在许多不足之处,如
    的头像 发表于 05-17 09:59 3139次阅读