0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

差分接口提高了RF收发器设计的性能

星星科技指导员 来源:ADI 作者:Mingming Zhao 2023-01-29 14:12 次阅读

在传统的收发器设计中,50 Ω单端接口广泛用于RF和IF电路。当电路互连时,它们都应该看到匹配的50 Ω输出和输入阻抗。然而,在现代收发器设计中,差分接口经常用于在IF电路中获得更好的性能,但实现它们需要设计人员面对几个常见问题,包括阻抗匹配、共模电压匹配和难以计算的增益。了解发射器和接收器中的差分电路有助于优化增益匹配和系统性能。

差分接口优势

差分接口有三个主要优点。首先,差分接口可以抑制外部干扰和接地噪声。其次,可以抑制偶数阶输出失真分量。这对于零中频(ZIF)接收器非常重要,因为低频信号中出现的偶数阶分量无法滤除。第三,输出电压可以是单端输出的两倍,从而在给定电源上将输出线性度提高6 dB。

本文讨论三种情况下的接口解决方案:ZIF接收器、超外差接收器和发射器。这三种架构广泛用于无线远程无线电单元 (RRU)、数字中继器和其他无线仪器。

ZIF 接收器接口设计和增益计算

在零中频(ZIF)接收器设计中,中频信号很复杂,直流和极低频信号可提供有用的信息。典型的解调器在驱动200 Ω至450 Ω负载时可以提供最佳性能,而ADC驱动器通常具有50 Ω以外的输入阻抗,因此将系统与直流耦合电路连接既关键又困难。

图1显示了使用两个低噪声放大器(LNA)、一个ADL5380 400 MHz至6000 MHz正交I/Q解调器、一个作为本振(LO)的宽带频率合成器ADF4350和双通道数字可编程可变增益放大器(VGA)的ZIF接收器配置。表1显示了相关的ADL5380接口和增益参数

pYYBAGPWDkOABag6AABTxVopZsY920.jpg?la=en&imgver=1

图1.ZIF 接收器框图。

表 1.ADL5380接口和增益参数

测试条件
VS = 5 V, TA = 25°C, fLO = 900 MHz,
fIF = 4.5 MHz, PLO = 0 dBm, ZIN = 50 Ω
参数

评论
电压转换增益
6.9分贝
I 和 Q 输出上的 450-Ω 差分负载
5.9分贝
I 和 Q 输出上的 200 Ω 差分负载
共模输出电压
2.5 V
ADJ 连接到 VS
I/Q差分输出阻抗
50 Ω

当与具有217 Ω差分输入阻抗的AD8366连接时,ADL5380具有5.9 dB电压增益和–0.5 dB功率增益[5.9 dB – 10log (217/50)]。为获得最佳性能,通过将ADL5380 ADJ引脚连接到V,将ADL5380和AD8366之间的共模电压设置为2.5 VS.在ADL5380和AD8366之间放置一个插入损耗为0.5 dB的差分四阶巴特沃兹低通滤波器,可抑制噪声和不需要的高频分量。虽然滤波器会导致一些不匹配,但在基带频率下是可以容忍的。

表 2.AD8366接口和增益参数

测试条件
VS = 5 V, TA = 25°C, ZS = 200 Ω,
ZL = 200 Ω, f = 10 MHz
参数

评论
电压转换增益
4.5分贝
最小数字增益设置
20.25分贝
最大数字增益设置
共模输出电压
1.5 V
最低
2.5 V
最大或输入自偏置
差分输入阻抗
217 Ω
共模输出电压
1.6 V
最低
3 V
最大
2.5 V VCMA和VCMB保持浮动状态
差分输出阻抗
28 Ω
线性输出摆幅
6 V 峰峰值
1dB 增益压缩

AD8366的共模输出电压可设置为2.5 V;当VCM保持浮动时,它具有最佳的线性度。遗憾的是,AD6642在0.9 V共模输入电压(0.5 × AVDD)下性能最佳。由于AD8366的共模输出电压必须在1.6 V至3 V之间,因此AD6642 VCM和AD8366 VCM端子不能直接连接,必须使用电阻将AD8366共模输出电压分压至0.9 V。

为获得最佳性能,AD8366应驱动200 Ω负载。为了实现所需的共模电平和阻抗匹配,在AD8366之后增加了63 Ω串联电阻和39 Ω分流电阻。该电阻网络将使功率增益衰减4 dB。

AD8366输出摆幅为6 V p-p,但电阻网络提供的4 dB衰减将AD6642的电压限制为2.3 V p-p,从而保护其免受大干扰尖峰或不受控制的增益造成的损坏。

插入损耗为1.5 dB的差分六阶巴特沃兹低通滤波器位于AD8366和AD6642之间,用于滤除不需要的高频元件。I通道的完整差分接口如图2所示。

poYBAGPWDkWAUN0RAACinVcez_w265.jpg?la=en&imgver=1

图2.ZIF接收机接口图及仿真滤波器特性。

为了保留足够的裕量以考虑增益随温度的变化,AD8366在正常模式下的增益设置为16 dB。

在这种配置中,整个信号链的增益为

5.9 dB – 10log (217/50) – 0.5 dB + 16 dB – 10log (200/217) – 1.5 dB – 4 dB
= 9.9 dB。

在ADL5380之前级联插入的两个LNA可实现32 dB增益。通过将模数转换器配置为 2V p-p 摆幅和 78 Ω 等效输入阻抗,它能够处理 –34dBm 单音 RF 输入信号。如果输入信号在调制时峰均比(PAR)为10 dB,则–41 dBm输入信号是接收器在不更改VGA设置的情况下可以处理的最大信号。

换句话说,电压增益可用于计算信号链链路预算。当输入端口阻抗等于输出端口阻抗时,电压增益等于功率增益。整个信号链的电压增益为

32 dB + 5.9 dB – 0.5 dB + 16 dB – 1.5 dB – 8 dB = 43.9 dB。

对于单音信号输入,要获得 2V p-p 摆幅范围,适当的输入功率为

8 dBm – 43.9 dB + 10log (78/50) = –34 dBm。

结果与计算的功率增益非常匹配。

在某些应用中,ADL5380可能需要直接连接到AD6642,在这种情况下,可以在AD6642差分输入端增加一个500 Ω电阻,以改善匹配。ADL5380的电压增益为6.9 dB,共模问题与AD8366相同。应使用 160 Ω 串联电阻和 100 Ω分流器来实现 500 Ω负载和所需的共模电压。同样,电阻网络将电压衰减8 dB(功率衰减4 dB)。

插入损耗为1.5 dB的低通滤波器位于ADL5380和AD6642之间,用于滤除不需要的频率分量。输入阻抗为50 Ω,输出阻抗为500 Ω。在这种配置中,整个信号链的增益为

6.9 dB – 10log (500/50) – 1.5 dB – 4 dB = –8.6 dB。

超外差接收器接口设计和增益计算

在超外差接收器中,系统使用交流耦合,因此在连接这些电路时不必考虑直流共模电压。

ADL535x和ADL580x等许多混频器具有200 Ω差分输出阻抗,因此不同输出阻抗的功率增益和电压增益分别表示。

图3所示为采用低噪声放大器ADL5523实现的超外差接收器的一个通道;ADL5356双通道平衡混频器,内置LO缓冲器、IF放大器和RF巴伦;低通滤波器;AD8376双通道超低失真中频VGA;另一个低通滤波器;以及AD6642双通道中频接收器。

poYBAGPWDkeAfUwcAABEudJOduM727.jpg?la=en&imgver=1

图3.超外差接收器图;显示一个频道。

该设计采用 140MHz IF 和 20MHz 带宽,因此器件可以交流耦合。

AD5356在200 Ω负载下性能最佳,但AD8376的输入阻抗为150 Ω。因此,为了抑制混频器输出杂散并提供更好的阻抗匹配,差分LC滤波器必须具有200 Ω输入阻抗和150 Ω输出阻抗。在必须通过尖锐滤波器抑制输出带信号的应用中,可以使用差分SAW滤波器,但这会在接收器信号链中引入损耗和群延迟。差分四阶带通巴特沃兹滤波器可能适用于许多无线接收器,因为RF滤波器可以为带外干扰提供足够的衰减。

表 3.ADL5356和AD8376接口和增益参数

ADL5356 测试条件
VS = 5 V, TA = 25°C, fRF = 1900 MHz,
fLO = 1760 MHz, LO power = 0 dBm
参数

评论
电压转换增益
14.5分贝
Z源 = 50 Ω,差分
Z负荷= 200 Ω差分
共模输出电压
2.5 V
ADJ 连接到 VS
功率转换增益
8.2分贝
包括 4:1 IF 端口变压器和 PCB 损耗
AD8376 测试条件
VS = 5 V, TA = 25°C, RS = RL = 150 Ω at 140 MHz
参数

评论
差分输入电阻
150 Ω
电压转换增益
–4 分贝
最低数字设置
20分贝 最大数字设置
输出阻抗
16 kΩ ||0.8 pF

AD8376的电流输出电路具有高输出阻抗,因此差分输出之间需要150 Ω。另一个差分滤波器必须衰减二次和三次谐波失真分量,因此这个150 Ω负载分为两部分。首先,在AD8376的输出端安装一个300 Ω电阻。另一个300 Ω电阻由两个165 Ω电阻和ADC的3 kΩ输入阻抗组成。两个 165 Ω电阻还为 ADC 输入提供直流共模电压。LC滤波器的输入和输出阻抗均为300 Ω。完美的源和负载匹配对于高中频应用非常重要。完整的界面如图 4 所示。

poYBAGPWDkuAW1NFAADlPyR3L-s405.jpg?la=en&imgver=1

图4.超外差接收机接口图及滤波器仿真结果.

在接收器中,20 dB LNA安装在混频器前面。混频器之后的滤波器具有2 dB的插入损耗;AD8376和ADC之间的滤波器具有1.2 dB的插入损耗。AD8376增益设置为14 dB,以提供足够的裕量来应对温度变化。接收器的总增益为

20 dB + 8.2 dB – 2 dB + 14 dB – 1.2 dB = 39 dB.

为了将ADC输入电压限制在2 V p-p以下,将功率传输到150-Ω电阻(300 Ω ||(165 Ω × 2) ||3 k Ω) 应小于 5.2 dBm。因此,对于单音信号,接收器的最大输入功率为–33.8 dBm。如果输入信号是10 dB PAR调制信号,则使用此增益设置的最大输入信号为–40.8 dBm。

发射机接口设计和增益计算

对于Tx通道设计,ZIF和超外差架构具有相似的接口特性,并且都需要TxDAC和调制器之间的直流耦合。大多数调制器的IF输入电路应由外部直流电压偏置;TxDAC输出可在直流耦合模式下为调制器提供直流偏置。大多数高速DAC具有电流输出,因此需要一个输出电阻来为调制器产生输出电压。®

图5所示为超外差或ZIF发送器,采用AD9122 TxDAC、低通滤波器、ADL537x正交调制器、另一个RF滤波器、ADF4350频率合成器、数控VGA、功率放大器和AD562x DAC实现,用于控制功率放大器(PA)的栅极电压。

pYYBAGPWDkyAA-xCAABQlHQ7vQU117.jpg?la=en&imgver=1

图5.变送器图。

对于AD9122,满量程输出电流可以设置在8.66 mA至31.66 mA之间。对于大于20 mA的满量程电流,无杂散动态范围(SFDR)会降低,但DAC的输出功率和ACPR会随着满量程电流设置的降低而降低。一个合适的折衷方案是0 mA至20 mA电流输出,由20 mA交流电流组成,电流和10 mA直流电平。

表 4.AD9122和ADL5372接口和增益参数

AD9122 测试条件
AVDD33 = 3.3 V, DVDD33 = 3.3 V,
DVDD18 = 1.8 V, CVDD18 = 1.8 V
参数

评论
满量程输出电流
8.66毫安
最小数字满量程设置
31.66毫安 最大数字满量程设置
输出电阻
10兆安
ADL5372 测试条件
VS = 5 V, TA = 25°C, fLO = 1900 MHz,
fIF = 140 MHz
参数

评论
输出功率
7.1分贝
VIQ = 1.4 V p-p differential
I 和 Q 输入偏置电平
0.5 V
推荐
差分输入阻抗
2900 kΩ

ADL5372的输入电路需要0.5 V共模电压,该电压由流过50 Ω电阻的10 mA直流电流提供。0mA 至 20mA 交流电流由两个 50 Ω电阻和一个 100 Ω 电阻共享。因此,调制器输入之间的交流电压为20 mA ×((50 × 2) || 100) = 1 V p-p。TxDAC和调制器之间的滤波器可去除不需要的频率成分。滤波器的输入和输出阻抗为100 Ω。完整的界面如图 6 所示。

poYBAGPWDk6ALor2AABlCdYZzNQ380.jpg?la=en&imgver=1

图6.直流耦合发射机IF接口图及滤波器仿真结果

采用50 Ω输出时,ADL5372的电压转换增益为0.2 dBm。对于13 dB PAR调制器信号,Tx数字预失真过程的平均功率必须至少降低15 dB。ADL5372采用1 V p-p单音输入时,调制器的平均输出功率为7.1 dBm – 2.9 dBm = 4.2 dBm。如果考虑低通滤波器的2.2 dBm插入损耗,峰值输出功率为4.2 dBm – 2.2 dBm = 2 dBm。在这种状态下,调制器输出端的平均输出功率为–10 dBm。

对于11 dBm的平均功率信号,Tx信号链中需要一个具有26 dBm P1dB的PA驱动器。如果需要2 dB插入损耗RF滤波器来抑制调制器的LO馈通和边带输出,则增益模块和PA驱动器必须提供总计21 dB的增益。本应用建议使用集成增益模块、数字控制衰减器和PA驱动器的ADL5243 VGA。

结论

本文介绍ADC解调器、IF VGA、混频器和模拟端口的ZIF和超外差接收器差分接口,以及TxDAC和FMOD之间的发送器差分接口,将ADI公司的器件用于信号链的有源部分。给出了为这些电路设计的应用滤波器的增益计算和仿真结果。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 放大器
    +关注

    关注

    142

    文章

    12416

    浏览量

    210003
  • 收发器
    +关注

    关注

    10

    文章

    2968

    浏览量

    104770
  • RF
    RF
    +关注

    关注

    65

    文章

    3025

    浏览量

    165645
收藏 人收藏

    评论

    相关推荐

    WiFi收发器的电源和接地设计

    射频(RF)电路的电路板布局应在理解电路板结构、电源布线和接地基本原则的基础上进行。本文探讨了相关的基本原则,并提供了一些实用的、经过验证的电源布线、电源旁路和接地技术,可有效提高RF设计的
    发表于 12-06 16:28

    AD9364BBCZ收发器

    多器件同步CMOS/LVDS数字接口AD9364BBCZ产品详情AD9364BBCZ是一款面向3G和4G基站应用的高性能、高集成度 的射频(RF) Agile Transceiver™捷变收发
    发表于 07-04 17:00

    采用AD9361高性能高度集成的RF收发器

    AD-FMCOMMS2-EBZ,评估板是一款高速模拟模块,旨在展示AD9361,这是一款高性能,高度集成的RF收发器,适用于RF应用,如3G和4G基站和测试设备应用,以及软件定义的无线
    发表于 07-04 14:15

    接口优化射频收发器设计介绍

      简介  传统收发器设计中,50 Ω单端接口广泛用于射频和中频电路。当电路进行互连时,应全部具有匹配的50 Ω输出和输入阻抗。然而在现代收发器设计中,
    发表于 07-04 07:47

    什么是用于RF收发器的简单基带处理

    挑战。这些收发器可为模拟RF信号链提供数字接口,允许轻松集成到ASIC或FPGA,进行基带处理。基带处理(BBP)允许在终端应用和收发器
    发表于 09-19 06:20

    优化信号链的电源系统 — RF收发器

    本文重点关注信号链的另一部——RF收发器。本文将探讨器件对来自各电源轨的噪声的敏感度,确定哪些器件需要额外的噪声滤波。本文提供了一种优化的电源解决方案,并通过将其SFDR和相位噪声性能
    发表于 12-10 07:00

    优化信号链的电源系统 — 第3部RF收发器

    ——RF收发器。本文将探讨器件对来自各电源轨的噪声的敏感度,确定哪些器件需要额外的噪声滤波。本文提供了一种优化的电源解决方案,并通过将其SFDR和相位噪声性能与当前PDN(当连接到RF
    发表于 12-19 08:00

    优化信号链的电源系统 — RF收发器

    本文重点关注信号链的另一部——RF收发器。本文将探讨器件对来自各电源轨的噪声的敏感度,确定哪些器件需要额外的噪声滤波。本文提供了一种优化的电源解决方案,并通过将其SFDR和相位噪声性能
    发表于 05-13 16:54

    借助差分接口改善射频收发器设计性能

    借助差分接口改善射频收发器设计性能 ...
    发表于 01-07 15:07 0次下载

    楔式制动器设计提高了线控刹车的性能

    楔式制动器设计提高了线控刹车的性能
    发表于 01-24 15:44 12次下载

    跳频的多样性提高了性能

    本文介绍了在简单的低功耗无线收发器的典型环境中增强无线链路的方法。它还专注于最大限度地提高无线链路的可靠性,同时保持整体硬件成本下降。对于许多简单的收发器,使用跳频分集的附加开销似乎不值得;然而,本文提出了强大的技术原因,即使是
    发表于 08-03 14:28 10次下载
    跳频的多样性<b class='flag-5'>提高了</b><b class='flag-5'>性能</b>

    AD9361 RF捷变收发器性能及应用

    AD9361是一款面向3G和4G基站应用的高性能、高集成度的射频(RF)Agile Transceiver™捷变收发器。该器件的可编程性和宽带能力使其成为多种收发器应用的理想选择。该器
    的头像 发表于 06-20 06:15 3028次阅读

    25-Gbps收发器使FPGA解决方案的性能提高了两倍多

    Altera宣布公司率先在可编程逻辑中成功演示25-Gbps收发器性能,在收发器技术上树立了关键里程碑。
    发表于 12-19 15:18 627次阅读

    AD9364: 1 X 1 RF捷变收发器

    AD9364: 1 X 1 RF捷变收发器
    发表于 03-21 09:27 5次下载
    AD9364: 1 X 1 <b class='flag-5'>RF</b>捷变<b class='flag-5'>收发器</b>

    带抽头电感的离线降压转换器提高了性能

    带抽头电感的离线降压转换器提高了性能
    发表于 11-14 21:08 1次下载
    带抽头电感的离线降压转换器<b class='flag-5'>提高了</b><b class='flag-5'>性能</b>