0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Python中LSTM回归神经网络的时间序列预测

jf_96884364 来源:jf_96884364 作者:jf_96884364 2023-01-11 16:24 次阅读

这个问题是国际航空乘客预测问题, 数据是1949年1月到1960年12月国际航空公司每个月的乘客数量(单位:千人),共有12年144个月的数据。

数据趋势:

训练程序:

import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
import torch 
from torch import nn
from torch.autograd import Variable


#LSTM(Long Short-Term Memory)是长短期记忆网络
data_csv = pd.read_csv('C:/Users/my/Desktop/LSTM/data.csv',usecols=[1])
#pandas.read_csv可以读取CSV(逗号分割)文件、文本类型的文件text、log类型到DataFrame
#原有两列,时间和乘客数量,usecols=1:只取了乘客数量一列

plt.plot(data_csv)
plt.show()
#数据预处理
data_csv = data_csv.dropna() #去掉na数据
dataset = data_csv.values      #字典(Dictionary) values():返回字典中的所有值。
dataset = dataset.astype('float32')   #astype(type):实现变量类型转换  
max_value = np.max(dataset)
min_value = np.min(dataset)
scalar = max_value-min_value
dataset = list(map(lambda x: x/scalar, dataset)) #将数据标准化到0~1之间
#lambda:定义一个匿名函数,区别于def
#map(f(x),Itera):map()接收函数f和一个list,把函数f依次作用在list的每个元素上,得到一个新的object并返回



'''
接着我们进行数据集的创建,我们想通过前面几个月的流量来预测当月的流量,
比如我们希望通过前两个月的流量来预测当月的流量,我们可以将前两个月的流量
当做输入,当月的流量当做输出。同时我们需要将我们的数据集分为训练集和测试
集,通过测试集的效果来测试模型的性能,这里我们简单的将前面几年的数据作为
训练集,后面两年的数据作为测试集。
'''python
def create_dataset(dataset,look_back=2):#look_back 以前的时间步数用作输入变量来预测下一个时间段
    dataX, dataY=[], []
    for i in range(len(dataset) - look_back):
        a = dataset[i:(i+look_back)]  #i和i+1赋值
        dataX.append(a)
        dataY.append(dataset[i+look_back])  #i+2赋值
    return np.array(dataX), np.array(dataY)  #np.array构建数组

data_X, data_Y = create_dataset(dataset)
#data_X: 2*142     data_Y: 1*142

#划分训练集和测试集,70%作为训练集
train_size = int(len(data_X) * 0.7)
test_size = len(data_X)-train_size
 
train_X = data_X[:train_size]
train_Y = data_Y[:train_size]
 
test_X = data_X[train_size:]
test_Y = data_Y[train_size:]
 
train_X = train_X.reshape(-1,1,2) #reshape中,-1使元素变为一行,然后输出为1列,每列2个子元素
train_Y = train_Y.reshape(-1,1,1) #输出为1列,每列1个子元素
test_X = test_X.reshape(-1,1,2)
 
 
train_x = torch.from_numpy(train_X) #torch.from_numpy(): numpy中的ndarray转化成pytorch中的tensor(张量)
train_y = torch.from_numpy(train_Y)
test_x = torch.from_numpy(test_X)


#定义模型 输入维度input_size是2,因为使用2个月的流量作为输入,隐藏层维度hidden_size可任意指定,这里为4
class lstm_reg(nn.Module):
    def __init__(self,input_size,hidden_size, output_size=1,num_layers=2):
        super(lstm_reg,self).__init__()
        #super() 函数是用于调用父类(超类)的一个方法,直接用类名调用父类
        self.rnn = nn.LSTM(input_size,hidden_size,num_layers) #LSTM 网络
        self.reg = nn.Linear(hidden_size,output_size) #Linear 函数继承于nn.Module
    def forward(self,x):   #定义model类的forward函数
        x, _ = self.rnn(x)
        s,b,h = x.shape   #矩阵从外到里的维数
                   #view()函数的功能和reshape类似,用来转换size大小
        x = x.view(s*b, h) #输出变为(s*b)*h的二维
        x = self.reg(x)
        x = x.view(s,b,-1) #卷积的输出从外到里的维数为s,b,一列
        return x

net = lstm_reg(2,4) #input_size=2,hidden_size=4
 
criterion = nn.MSELoss()  #损失函数均方差
optimizer = torch.optim.Adam(net.parameters(),lr=1e-2)
#构造一个优化器对象 Optimizer,用来保存当前的状态,并能够根据计算得到的梯度来更新参数
#Adam 算法:params (iterable):可用于迭代优化的参数或者定义参数组的 dicts   lr:学习率


for e in range(10000):
    var_x = Variable(train_x) #转为Variable(变量)
    var_y = Variable(train_y)
 
    out = net(var_x)
    loss = criterion(out, var_y)
 
    optimizer.zero_grad() #把梯度置零,也就是把loss关于weight的导数变成0.
    loss.backward()  #计算得到loss后就要回传损失,这是在训练的时候才会有的操作,测试时候只有forward过程
    optimizer.step() #回传损失过程中会计算梯度,然后optimizer.step()根据这些梯度更新参数
    if (e+1)%100 == 0:
        print('Epoch: {}, Loss:{:.5f}'.format(e+1, loss.data[0]))
        
torch.save(net.state_dict(), 'net_params.pkl') #保存训练文件net_params.pkl
#state_dict 是一个简单的python的字典对象,将每一层与它的对应参数建立映射关系

测试程序:

import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
import torch 
from torch import nn
from torch.autograd import Variable
 
 
 
data_csv = pd.read_csv('C:/Users/my/Desktop/LSTM/data.csv',usecols=[1])
 
# plt.plot(data_csv)
# plt.show()
#数据预处理

data_csv = data_csv.dropna() #去掉na数据
dataset = data_csv.values #字典(Dictionary) values():返回字典中的所有值。
dataset = dataset.astype('float32') # astype(type):实现变量类型转换  
max_value = np.max(dataset)
min_value = np.min(dataset)
scalar = max_value-min_value
dataset = list(map(lambda x: x/scalar, dataset)) #将数据标准化到0~1之间

def create_dataset(dataset,look_back=2):
    dataX, dataY=[], []
    for i in range(len(dataset)-look_back):
        a=dataset[i:(i+look_back)]
        dataX.append(a)
        dataY.append(dataset[i+look_back])
    return np.array(dataX), np.array(dataY)
 
data_X, data_Y = create_dataset(dataset)


class lstm_reg(nn.Module):
    def __init__(self,input_size,hidden_size, output_size=1,num_layers=2):
        super(lstm_reg,self).__init__()
 
        self.rnn = nn.LSTM(input_size,hidden_size,num_layers)
        self.reg = nn.Linear(hidden_size,output_size)
 
    def forward(self,x):
        x, _ = self.rnn(x)
        s,b,h = x.shape
        x = x.view(s*b, h)
        x = self.reg(x)
        x = x.view(s,b,-1)
        return x
 
 
net = lstm_reg(2,4)

net.load_state_dict(torch.load('net_params.pkl')) 

data_X = data_X.reshape(-1, 1, 2) #reshape中,-1使元素变为一行,然后输出为1列,每列2个子元素
data_X = torch.from_numpy(data_X) #torch.from_numpy(): numpy中的ndarray转化成pytorch中的tensor(张量)
var_data = Variable(data_X) #转为Variable(变量)
pred_test = net(var_data)  #产生预测结果
pred_test = pred_test.view(-1).data.numpy() #view(-1)输出为一行

plt.plot(pred_test, 'r', label='prediction')
plt.plot(dataset, 'b', label='real')
plt.legend(loc='best') #loc显示图像  'best'表示自适应方式
plt.show()

预测结果:

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4574

    浏览量

    98749
  • python
    +关注

    关注

    51

    文章

    4675

    浏览量

    83467
  • LSTM
    +关注

    关注

    0

    文章

    42

    浏览量

    3682
收藏 人收藏

    评论

    相关推荐

    基于LSTM神经网络的公交行程时间预测案例

    近年来,结合注意力机制的神经网络成为研究的热点,被广泛应用于机器翻译、图像分类等领域,在公交行程时间预测问题上的研究相对较少。
    发表于 10-10 09:42 1049次阅读

    有提供编写神经网络预测程序服务的吗?

    有提供编写神经网络预测程序服务的吗?
    发表于 12-10 13:50

    关于BP神经网络预测模型的确定!!

    请问用matlab编程进行BP神经网络预测时,训练结果很多都是合适的,但如何确定最合适的?且如何用最合适的BP模型进行外推预测
    发表于 02-08 14:23

    Keras之ML~P:基于Keras建立的回归预测神经网络模型

    Keras之ML~P:基于Keras建立的回归预测神经网络模型(根据200个数据样本预测新的5+1个样本)——
    发表于 12-20 10:43

    什么是LSTM神经网络

    简单理解LSTM神经网络
    发表于 01-28 07:16

    开发和设计实现LSTM模型用于家庭用电的多步时间序列预测相关资料分享

    短期记忆递归神经网络能够自动学习序列数据的特征,支持多变量数据,并且可以输出可用于多步预测的可变长度序列。总体概述本教程分为九个部分; 他们是:问题描述加载并准备数据集模型评估...
    发表于 07-05 06:43

    介绍有关时间序列预测时间序列分类

    通过之前有关LSTM的8遍基础教程和10篇处理时间序列预测任务的教程介绍,使用简单的序列数据示例,已经把
    发表于 07-12 09:18

    如何构建神经网络

    原文链接:http://tecdat.cn/?p=5725 神经网络是一种基于现有数据创建预测的计算系统。如何构建神经网络神经网络包括:输入层:根据现有数据获取输入的层隐藏层:使用反
    发表于 07-12 08:02

    怎样去搭建一套用于多步时间序列预测LSTM架构?

    如何开发和评估家庭电力数据集的预测模型?LSTM在多步时间序列预测方面具有哪些优势?怎样去搭建一套用于多步
    发表于 07-22 06:19

    回归滞后模型进行多变量时间序列预测案例分享

    1、如何建立一个模型来进行多元时间序列预测呢?  下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列
    发表于 11-30 15:33

    基于遗传小波神经网络的海杂波预测

    根据相空间重构理论,提出了一种基于遗传小波神经网络(GA-WNN)的混沌时间序列预测方法。根据takens理论,计算出相空间重构所需延迟时间
    发表于 12-24 15:43 9次下载

    如何使用树结构长短期记忆神经网络进行金融时间序列预测

    针对传统方法对 多噪声、非线性的时间序列无法进行有效预测的问题,以多尺度特征融合为切入点,提出并验证了基于树结构长短期记忆(LSTM神经网络
    发表于 11-19 16:16 7次下载
    如何使用树结构长短期记忆<b class='flag-5'>神经网络</b>进行金融<b class='flag-5'>时间</b><b class='flag-5'>序列</b><b class='flag-5'>预测</b>

    循环神经网络LSTM为何如此有效?

    长短期记忆网络LSTM),作为一种改进之后的循环神经网络,不仅能够解决 RNN无法处理长距离的依赖的问题,还能够解决神经网络中常见的梯度爆炸或梯度消失等问题,在处理
    的头像 发表于 03-19 11:22 2511次阅读
    循环<b class='flag-5'>神经网络</b><b class='flag-5'>LSTM</b>为何如此有效?

    结合小波变换的LSTM循环神经网络的税收预测

    分析历史税收数据之间的隐藏关系,利用数学模型来预测未来的税收收入是税收预测的研究重点。在此,提出了一种结合小波变换的长短期记忆(LSTM循环神经网络的税收
    发表于 04-28 11:26 10次下载
    结合小波变换的<b class='flag-5'>LSTM</b>循环<b class='flag-5'>神经网络</b>的税收<b class='flag-5'>预测</b>

    卷积神经网络python代码

    的卷积操作,将不同层次的特征进行提取,从而通过反向传播算法不断优化网络权重,最终实现分类和预测等任务。 在本文中,我们将介绍如何使用Python实现卷积神经网络,并详细说明每一个步骤及
    的头像 发表于 08-21 16:41 690次阅读