0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

嵌入式的单向散列算法

汽车电子技术 来源:嵌入式系统 作者:嵌入式系统 2023-01-20 11:11 次阅读

1、单向散列算法

单向散列算法,又称hash哈希函数,Hash函数(也称杂凑算法)就是把任意长的输入消息串变化成固定长的输出串的一种函数,该过程是不可逆的。Hash函数可用于数字签名、消息的完整性检测、消息起源的认证检测等。较为常用的方法包括MD算法和SHA算法。

1.1 MD(Message Digest)消息摘要算法

MD系列算法分为MD2、MD4、MD5三种算法,最常用的是MD5版本算法,用来把不同长度的数据块进行暗码运算成一个128位的散列值(hash value),用于确保信息传输完整一致。

应用场景:嵌入式系统开发中,MD5一般用于校验文件的完整性,如通过网络下载的文件,可能缺少部分或者被篡改,通过计算实际接收文件的MD5码,与原始MD5比较,判断文件是否正确。在密码存储方面,将用户输入的明文密码转成MD5码保存,后期应用只匹配比较MD5码,这样即使后台管理员也无法查看到真实密码。

具体算法可以参考 [ 嵌入式算法9---MD5的应用与实现 ]

1.2 SHA(Secure Hash Algorithm)安全散列算法

SHA是一个密码散列函数家族,SHA算法主要分为SHA-1、SHA-2、SHA-3 三大类,一般使用SHA-2算法,主要有SHA-256、SHA-512、SHA-224、SHA-384四种,对于嵌入式一般选择SHA256,将任意长度的输入压缩成256位,且哈希碰撞的概率近乎为0。

应用场景:数字签名、数字时间戳、数字证书。

1.3 MAC(Message Authentication Code)消息认证码

对称加密算法是为了保证数据的机密性,hash算法是为了验证数据的完整性,而MAC算法既可以验证数据的完整性,又可以验证数据是否被篡改。似乎嵌入式开发中少见。

2、SHA256

一般嵌入式系统签名或者校验复杂版使用SHA256,也就是长度小于2^64字节的任意数据,经过哈希运算得到256比特的消息摘要。

2.1 源码

SHA256源码如下:

#include "stdlib.h"

//sha256.h
#define SHA256_BLOCK_SIZE 32 //SHA 256bits = 32Bytes

typedef unsigned char uint8_t; 
typedef unsigned int  uint32_t;

typedef struct
{
    uint8_t data[64];
    uint32_t datalen;
    unsigned long long bitlen;
    uint32_t state[8];
} sha256_ctx_t;

//api
extern void sha256_init(sha256_ctx_t *ctx);
extern void sha256_update(sha256_ctx_t *ctx, const uint8_t data[], uint32_t len);
extern void sha256_final(sha256_ctx_t *ctx, uint8_t hash[]);

//sha256.c
/****************************** MACROS ******************************/
#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))

#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))

/**************************** VARIABLES *****************************/
static const uint32_t k[64] =
{
    0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
    0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
    0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
    0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
    0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
    0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
    0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
    0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};


static void sha256_transform(sha256_ctx_t *ctx, const uint8_t data[])
{
    uint32_t a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];

    for(i = 0, j = 0; i < 16; ++i, j += 4)
    {
        m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
    }
    for(; i < 64; ++i)
    {
        m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
    }

    a = ctx->state[0];
    b = ctx->state[1];
    c = ctx->state[2];
    d = ctx->state[3];
    e = ctx->state[4];
    f = ctx->state[5];
    g = ctx->state[6];
    h = ctx->state[7];

    for(i = 0; i < 64; ++i)
    {
        t1 = h + EP1(e) + CH(e, f, g) + k[i] + m[i];
        t2 = EP0(a) + MAJ(a, b, c);
        h = g;
        g = f;
        f = e;
        e = d + t1;
        d = c;
        c = b;
        b = a;
        a = t1 + t2;
    }

    ctx->state[0] += a;
    ctx->state[1] += b;
    ctx->state[2] += c;
    ctx->state[3] += d;
    ctx->state[4] += e;
    ctx->state[5] += f;
    ctx->state[6] += g;
    ctx->state[7] += h;
}

void sha256_init(sha256_ctx_t *ctx)
{
    ctx->datalen = 0;
    ctx->bitlen = 0;
    ctx->state[0] = 0x6a09e667;
    ctx->state[1] = 0xbb67ae85;
    ctx->state[2] = 0x3c6ef372;
    ctx->state[3] = 0xa54ff53a;
    ctx->state[4] = 0x510e527f;
    ctx->state[5] = 0x9b05688c;
    ctx->state[6] = 0x1f83d9ab;
    ctx->state[7] = 0x5be0cd19;
}

void sha256_update(sha256_ctx_t *ctx, const uint8_t data[], uint32_t len)
{
    uint32_t i;

    for(i = 0; i < len; ++i)
    {
        ctx->data[ctx->datalen] = data[i];
        ctx->datalen++;
        if(ctx->datalen == 64)
        {
            sha256_transform(ctx, ctx->data);
            ctx->bitlen += 512;
            ctx->datalen = 0;
        }
    }
}

void sha256_final(sha256_ctx_t *ctx, uint8_t hash[])
{
    uint32_t i;

    i = ctx->datalen;

    // Pad whatever data is left in the buffer.
    if(ctx->datalen < 56)
    {
        ctx->data[i++] = 0x80;
        while(i < 56)
        {
            ctx->data[i++] = 0x00;
        }
    }
    else
    {
        ctx->data[i++] = 0x80;
        while(i < 64)
        {
            ctx->data[i++] = 0x00;
        }
        sha256_transform(ctx, ctx->data);
        memset(ctx->data, 0, 56);
    }

    // Append to the padding the total message's length in bits and transform.
    ctx->bitlen += ctx->datalen * 8;
    ctx->data[63] = ctx->bitlen;
    ctx->data[62] = ctx->bitlen >> 8;
    ctx->data[61] = ctx->bitlen >> 16;
    ctx->data[60] = ctx->bitlen >> 24;
    ctx->data[59] = ctx->bitlen >> 32;
    ctx->data[58] = ctx->bitlen >> 40;
    ctx->data[57] = ctx->bitlen >> 48;
    ctx->data[56] = ctx->bitlen >> 56;
    sha256_transform(ctx, ctx->data);

    // Since this implementation uses little endian byte ordering and SHA uses big endian,
    // reverse all the bytes when copying the final state to the output hash.
    for(i = 0; i < 4; ++i)
    {
        hash[i]      = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
        hash[i + 4]  = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
        hash[i + 8]  = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
        hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
        hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
        hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
        hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
        hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
    }
}
/***********************************************************************/
//test
void log(char *head, uint8_t *data, uint8_t len)
{
    uint8_t i;
    printf("%s:", head);
    for(i = 0; i < len; i++)
    {
        printf("%02X ", data[i]);
    }
    printf("\\r\\n");
}

int main(int argc, char *argv[])
{
    uint8_t buff1[] = {"embedded-system"};
    uint8_t buff2[] = {0x00, 0x65, 0x00, 0x6D, 0x00, 0x62, 0x00, 0x65, 0x00, 0x64, 0x00, 0x64, 0x00, 0x65, \\
                       0x00, 0x64, 0x00, 0x2D, 0x00, 0x73, 0x00, 0x79, 0x00, 0x73, 0x00, 0x74, 0x00, 0x65, 0x00, 0x6D
                      };
    uint8_t sha256_result[32] = {0};

    sha256_ctx_t sha;
    sha256_init(&sha);
    sha256_update(&sha, buff1, strlen(buff1));
    sha256_final(&sha, sha256_result);
    log("buff1   sha256", sha256_result, 32);

    sha256_init(&sha);
    sha256_update(&sha, buff2, sizeof(buff2));
    sha256_final(&sha, sha256_result);
    log("buff2   sha256", sha256_result, 32);

    sha256_init(&sha);
    sha256_update(&sha, buff1, strlen(buff1));
    sha256_update(&sha, buff1, strlen(buff1));
    sha256_update(&sha, buff1, strlen(buff1));
    sha256_final(&sha, sha256_result);
    log("buff1*3 sha256", sha256_result, 32);

    return 0;
}

2.2 应用

对嵌入式系统,在RAM空间有限的情况下,对较长的数据进行运算,SHA256是可以分段多次传入数据的。如上使用范例第3段所示。一般用于校验密钥或文件是否传输错误或被篡改。

3、 SHA256与MD5比较

一般嵌入式系统使用的单向散列函数是MD5和SHA256。两者都是实现对任意长度输入,经运算输出固定长度的摘要数据。

无限多可能的输入数据转换成了数量有限的输出值,理论上是会出现两个不同的输入值运算结果相同,这种情况称为碰撞,即不同的消息产生同一个散列值的情况。

MD5是输出128比特的散列值,而SHA256是256比特;可见SHA256的安全性略高,但其运算耗时也多。

具体应用选择哪种并没太严格的标准。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • MD
    MD
    +关注

    关注

    0

    文章

    10

    浏览量

    15826
  • Hash
    +关注

    关注

    0

    文章

    32

    浏览量

    13105
  • HASH函数
    +关注

    关注

    0

    文章

    4

    浏览量

    5704
收藏 人收藏

    评论

    相关推荐

    嵌入式AES算法CBC模式

    嵌入式AES算法CBC模式
    发表于 08-18 07:28

    诚聘嵌入式算法工程师

    猎头职位:嵌入式算法工程师【上海】工作职责: 1.负责传感器相关的图像处理,模式识别,信号处理方面的算法开发;2.验证算法原型,并在嵌入式
    发表于 10-21 11:14

    诚聘嵌入式算法工程师

    猎头职位:嵌入式算法工程师【上海】工作职责: 1.负责传感器相关的图像处理,模式识别,信号处理方面的算法开发;2.负责调试、改进相关程序,验证算法原型,并在
    发表于 10-26 15:28

    嵌入式linux培训教程 嵌入式linux学习方法步骤

    工作原理,但重点在嵌入式软件,特别是操作系统级软件,那将是我的优势。 科目:数字电路、计算机组成原理、嵌入式微处理器结构。 汇编语言、C/C++、编译原理、离散数学。 数据结构和算法、操作系统、软件工程
    发表于 07-03 18:25

    【杭州】诚聘嵌入式算法工程师

    猎头职位:嵌入式算法工程师 (年薪:20-40W)工作职责:1.负责部分控制算法的研究及实现;2.负责软件设计文档编写工作;3.负责项目开发文档的编制工作;4.参与自动化设备的验证与测试工作;5.
    发表于 08-02 15:43

    【下载】《嵌入式系统软件设计中的数据结构》

    教学参考书。内容简介  根据嵌入式系统软件设计需要的“数据结构”知识编写而成。书中基本内容有:常用线性数据结构在嵌入式系统中的实现和相关算法;树和图在嵌入式系统中的实现和相关
    发表于 11-30 17:46

    算法 数字IC设计 嵌入式软件 招聘

    较深,有 Risc-V 开发经验者优先。工作职责:设计 32 位高性能嵌入式 CPU, Memory bus, Memory Cache。职位要求:1、硕士及以上学历,微电子/电子工程/通信工程等相关
    发表于 08-02 16:03

    嵌入式小波编码算法的原理是什么?

    Partitioned Embedded bloCK coder),可逆嵌入小波压缩算法(CREW:Compression with Reversible Embedded Wavelets)[3] 。本文对这些算法进行了原理
    发表于 08-15 08:27

    如何通过使用FPGA高速实现SHA-1消息认证算法

    在IPSec协议中认证使用SHA-1和MD5单向函数算法实现,通过使用FPGA高速实现SHA-1消息认证算法
    发表于 04-13 06:02

    嵌入式系统的数据结构与算法的资料汇总

    嵌入式系统的数据结构与算法
    发表于 11-16 08:11

    谈一谈嵌入式设备的压缩存储算法

    在整个物联网系统中,嵌入式设备作为数据采集、过滤、缓存、传输的节点,前面系列文章分别介绍了嵌入式设备相关的各种数据过滤、校验和压缩存储算法。缓存和传输阶段,考虑到嵌入式设备的存储空间和
    发表于 12-21 08:17

    嵌入式技术是什么

    开发的缺点软件移植性差(适配平台能力差)开发人员能力要求:软硬通吃二、嵌入式开发的方向嵌入式上层应用软件开发a、精通一门语言b、熟悉一款操作系统(会看说明书)c、数据结构算法...
    发表于 12-22 06:19

    嵌入式系统中语音算法的基本原理是什么

    嵌入式系统中语音算法的基本原理是什么?嵌入式系统中语音算法有何功能?
    发表于 12-23 08:49

    如何学习嵌入式

    驱动开发,嵌入式应用开发,嵌入式系统开发,大致分为以上四类,但又分为很多方向的,有的是做音频,图像,算法,系统等。
    发表于 01-24 08:18

    嵌入式软件加密算法的相关资料分享

    嵌入式软件加密算法
    发表于 02-11 07:11