0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

gcc编译时,链接器安排的【虚拟地址】是如何计算出来的?

微云疏影 来源:道哥分享 作者:道哥分享 2023-01-24 16:46 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

问题描述

昨天下午,旁边的同事在学习Linux系统中的虚拟地址映射(经典书籍《程序员的自我修养-链接、装载与库》),在看到6.4章节的时候,对于一个可执行的ELF文件中,虚拟地址的值百思不得其解!

例如下面这段C代码:

首先编译出32位的可执行程序(为了避开一些与主题无关的干扰因素,采用了静态链接):

gcc -m32 -static test.c -o test

编译得到ELF格式的可执行文件:test。

这个时候,使用readelf工具来查看这个可执行文件中的段信息(segment):

上图中的红色矩形框中,第二个段的地址为什么是 0x080e_9f5c?

这篇文章主要根据书中的解释,来具体的分析这个值的来龙去脉。

ELF 文件格式

在Linux系统中,有4种类型的文件都是ELF格式,包括:目标文件,可执行文件,动态链接库文件、核心转储文件。

如果想系统掌握Linux系统中的底层知识,研究ELF的格式是避免不了的事情。

很久之前总结过这篇文章:《Linux系统中编译、链接的基石-ELF文件:扒开它的层层外衣,从字节码的粒度来探索》,里面详细总结了ELF文件的内部结构。

这里就不再赘述了,只要记住2点:

1.从编译器的角度看,ELF 文件是由很多的节(Section)组成的;

2.从程序加载器的角度看,ELF 文件是又很多的段(Segment)组成的;

其实它俩没有本质区别,只不过是链接器在链接阶段,把不同目标文件中相同的section组织在一起,形成一个 segment。

对于刚才编译出的test可执行文件,其加载视图如下:

可以看到该文件一共有5个段(segment),前2个需要LOAD到内存的段,它们属性分别是:读、执行(R E) 和 读、写(RW),它们分别是代码段和数据段。

绿色的箭头反映出:代码段中包含了很多的 section;黄色的箭头反映出数据段也包含了很多的 section。

地址转换和内存映射

从地址转换的角度来看:

Linux 系统中CPU中使用的都是虚拟地址,该虚拟地址在寻址的时候,需要经过MMU地址转换,得到实际的物理地址,然后才能在物理内存中读取指令,或者读取、写入数据。

在现代操作系统中,MMU地址转换单元基本上都是通过页表来进行地址转换的:

当然了,有些系统是两级转换(页目录、页表),有些系统是三级或者四级页表。

从内存映射的角度来看:

操作系统在把一个可执行程序加载到系统中时,把ELF文件中每个段的内容读取到物理内存中,然后把这个物理内存映射到该段对应的虚拟地址上(VirtAddr)。

假设一个可执行程序中的代码段长度是1.2K字节, 数据段长度是1.3K字节。

操作系统在把它俩读取到内存中时,需要 2 个物理内存页来分别存储它们(每 1 个物理页的长度是4K):

虽然每一个物理内存页的大小是 4K,但是代码段和数据段实际上只使用了每个页面刚开始的一段空间。

当CPU中需要读取物理内存上代码段中的指令时,使用的虚拟地址是 0x0000_1000 ~ 0x0000_1000 + 1.2K这个区间的地址,MMU单元经过页表转换之后,就会得到这个存放着代码段的物理页的物理地址。

数据段的寻址方式也是如此:当CPU中需要读写物理内存上数据段中的数据时,使用的虚拟地址是 0x0000_2000 ~ 0x0000_2000 + 1.3K这个区间的地址。

MMU单元经过页表转换之后,就会得到存放着数据段的物理页的物理地址。

可以看出在这样的安排下,每一个段的虚拟地址,都是按照4K(0x1000)对齐的。

如果操作系统都是这样简单映射的话,那么事情就简单多了。

如果按照这样的安排,来分析一下文章开头的 test 可执行程序中的虚拟地址安排:

1.代码段安排的开始虚拟地址是 0x0804_8000,这是 4K 对齐的;

2.代码段的结束虚拟地址就应该是 0x0804_8000 + 0xa0725 = 0x080e_8725;

3.那么数据段的开始地址就可以安排在 0x080e_8725 之后的下一个 4K 对齐的边界地址,即:0x080e_9000。

但是这样的地址安排,严重浪费了物理内存空间!

1.2K 字节的代码段加上1.3K字节的数据段,本来只需要1个物理页就够了(4KB),但是这里却消耗掉2个物理页(8KB)。

为了减少物理内存的浪费,Linux操作系统就采用了一些巧妙的办法来减少物理内存的浪费,那就是: 把文件中接壤部分的代码段和数据段,读取到同一个物理内存页中,然后在虚拟地址空间中映射两次,详述如下。

Linux 中的内存重复映射

先来看一下test文件的结构:

代码段在文件中的开始位置是:0x00000,长度是 0xa0725。

数据段的开始位置是:0xa0f5c,长度是0x1024。

可以看到它俩之间有一个空白区间,长度是: 0xa0f5c - 0xa0725 = 0x837(十进制:2103字节)。

由于操作系统在把test文件读取到物理内存的时候,从文件开始代码段的0x00000地址开始读取,按照4KB为一个单位存放到一个物理页中。

1.文件中代码段的 0x00000 ~ 0x00FFF 读取到一个物理页中;

2.文件中代码段的 0x01000 ~ 0x01FFF 读取到物理页中;

3.下面的内容都是如此分割、复制;

也就是说:相当于把test文件从开始位置,按照4KB为一个单位进行"切割",然后复制到不同的物理内存页中,如下所示:

注意:这些物理页的地址很可能是不连续的。

这里有意思的是:代码段与数据段接壤的这个4KB的空间,它的开始地址是0xA0000,结束地址是0xA0FFF,被复制到物理内存中最上面的橙色物理页中。

再来看一下代码段的虚拟地址:在执行gcc指令的的时候,链接器把代码段的虚拟地址安排在0x0804_8000处:

也就是说:当CPU中(或者说程序代码中),使用0x0804_8000 ~ 0x0804_7FFF 这个区间的地址时,经过地址映射,就会找到物理内存中浅绿色的物理页,而这个物理页也对应着test可执行文件开始的第一个4KB的空间。

而且,从虚拟地址的角度看,它的地址都是连续的,对应着test文件中连续的内容,这也是虚拟地址映射的本质。

把代码段的开始位置安排在 0x0804_8000 地址,这是 Linux 操作系统确定的。

那么考虑一下:代码段的最后一部分指令相应的4K页面,其对应的开始虚拟地址是多少呢?

上图中已经标记出来了,就是虚拟地址中橙色部分:0x080e_8000,计算如下:

通过代码段的开始地址0x0804_8000,再加上代码段在内存中的长度0xa0725,结果就是 0x080e_8725。

按照4K (0x1000)对齐之后,最后一个虚拟页就应该是0x080e_8000。

也就是说:虚拟地址中0x080e_8000 ~ 0x080e_8724 这个区间就对应着test文件中代码段的最后一部分指令(0x725个字节)。

此外,上图中最右侧:test文件结构中的2个红色地址:0xA0000, 0xA1000,是如何计算得到的?

代码段的长度是 0xA0725,按照4K为一个单位来进行分割,也就是把0xA0725对0x1000进行整除,就得到这个4KB的开始地址0xA0000。

同理,下一个4KB的开始地址就是0xA1000。

把文件中这部分4K的数据(包括:一部分代码段内容 + 0x837 字节空洞 + 一部分数据段内容),复制到上图中物理内存中最上面的橙色物理页中。

又因为虚拟地址空间中,0x080E_8000开始的这个4KB空间映射到这个物理页中,所以:在这个虚拟地址空间中,也有一个0x837字节的空洞,如下所示:

空洞的下方,是代码段的指令;空洞的上方,是数据段的数据。

现在,这个物理页中即存放了代码,又存放了数据。

那么CPU中在查找部分的代码和数据的时候,必须都能够找得到才行!

对于代码段比较好理解:从这个物理页开始的前0x725个字节是有效的,从虚拟地址的角度看,就是从0x080e_8000开始的前0x725个字节是有效的。

因此,对于这部分代码的寻址,使用的虚拟地址处于0x080e_8000 ~ 0x080e_8724这个区间中。

那么数据段呢?

重点来了:Linux系统把虚拟地址空间 0x080e_9000 ~ 0x080e_9FFF 也映射到图中物理内存中最上面的橙色物理页上!

如下所示:

因为物理页中,是从0x837个字节空洞的上面开始,才是真正的数据段内容,那么相应的: 虚拟地址0x080e_9000 ~ 0x080e_9FFF空间中,0x837字节上面的内容才是数据段内容。

那么在虚拟地址空间中,这个数据段的开始地址应该是多少呢?

只要计算出0x837字节空洞的上方,距离这个4K页面开始地址的偏移量就可以了,然后再加上这个4K页面的起始地址 0x080E_9000,就得到了数据段的开始地址(虚拟地址)。

因为虚拟地址、物理地址、test文件中,都是按照4K的单位进行划分的,因此这个偏移量就等于:test文件中数据段的开始地址(0xA0F5C) 距离 这个页面的开始地址(0xA0000) 的偏移量。

0xA0F5C - 0xA0000 = 0xF5C 。

即:从这个4K页面的开始地址,偏移量为0xF5C的地方,才是数据段内容的开始。

因此对于虚拟地址来说,从0x080e_9000地址开始,偏移量为0xF5C之后的内容才是数据段的内容,这个地址值就是:0x080e_9000 + 0xF5C = 0x080e_9F5C,如下所示:

这个地址正是readelf工具读所显示的:数据段加载到虚拟地址空间中的开始地址,如下所示:

至此,就解释了文章开头提出的问题!

再来看一下整个数据段的内容:在内存中数据段占据的空间是 0x01e48(readelf 工具读取到的 MemSiz),那么数据段的结束地址就是(虚拟地址):

0x080e_9F5C + 0x01e48 = 0x080e_bda4

如下所示:

小结

Linux系统中的这个操作:对属于不同段的内容进行重复映射,有点类似于共享内存的味道了。

只不过这里重复映射之后,每个段的虚拟地址还是需要修正为该段的合法地址。

经过这样的操作之后,在虚拟地址中每一个段的界限是泾渭分明的,但是映射到的物理内存页,则有可能是同一个。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • Linux
    +关注

    关注

    88

    文章

    11627

    浏览量

    217895
  • 操作系统
    +关注

    关注

    37

    文章

    7328

    浏览量

    128605
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    关于系统链接脚本的介绍

    Flash里面,但上电后上载至ITCM中进行执行(flash模式) 三、关于物理地址虚拟地址 物理地址是该程序要被存储的存储地址(调试
    发表于 10-30 08:26

    贴片电容的精度是怎么计算出来的?

    贴片电容的精度通过 实际电容值与标称电容值的偏差范围 计算得出,其核心计算逻辑和关键要点如下: 一、精度定义与计算公式 贴片电容的精度表示实际电容值与标称值的允许偏差范围,计算公式为:
    的头像 发表于 10-11 15:01 682次阅读
    贴片电容的精度是怎么<b class='flag-5'>计算出来</b>的?

    MOS管的连续电流ID计算示例

    在电子电路的设计中,MOS管是一种极为重要的分立器件,它广泛应用于电源管理、电机驱动等众多领域。而在MOS管的规格书中,连续电流ID这个参数备受关注。那么,MOS的规格书上的连续电流ID究竟是怎么计算出来的呢?今天我们就来解析其背后的计算逻辑。
    的头像 发表于 09-22 11:04 871次阅读
    MOS管的连续电流ID<b class='flag-5'>计算</b>示例

    LT3482的OUT2引脚电压与APD引脚电压是什么关系?如何通过OUT2电压 计算APD引脚电压 ?

    你好, 如下图,通过 OUT2电压计算公式 OUT2电压为 89.44V,而如下图APD引脚 的 85V ,是怎么计算出来的。? LT3482 的 OUT2 引脚电压计算公式:
    发表于 04-17 06:20

    AD2S1200解码芯片的精度是11弧分,这个数值是怎么计算出来的?

    请问一下,AD2S1200解码芯片的精度是11弧分,这个数值是怎么计算出来的?
    发表于 04-15 06:20

    STM32F1 xcube cryptolib ECDSA计算出来的摘要值和外部验证工具计算出来的签名值对不上怎么解决?

    STMF1 xcube cryptolib ECDSA签名,采用CMOX_ECC_CURVE_SECP256R1曲线、SHA256摘要算法,计算出来的摘要值和外部验证工具计算出来的签名值对不上,外部
    发表于 03-07 09:24

    串行DS90UB960的输入接口FPD-LINK的阻抗要求是什么?

    现在使用串行DS90UB960的FPD-LINK接口通过连接和同轴电缆连接相机,同轴电缆和连接特性阻抗都为50欧,但是在我的PCB板的一段传输线特性阻抗计算出来只有40欧
    发表于 02-28 08:22

    DLP NIRScan Nano光照强度如何计算

    我获取到了Nano的扫描数据,在对数据进行解析的时候遇到了一个问题,我搞不明白光照强度是如何得出来的,我在例程库里边找到了代码,我没看懂,还有就是按照代码计算出来的光强是不正确的,请教各位工程师给予指点。
    发表于 02-28 07:30

    DLP6500BFYE数据手册上给出的这个9523hz是在何种情况下如何计算出来的?

    加载时间为99.4us,以一副图像的加载时间作为它的显示时间,那这样计算下来图像的速率都超过了10000hz,但是DLP6500FYE的数据手册给出它的图像速率最高仅为9523hz,请问是我哪里理解错了吗,数据手册上给出的这个9523hz是在何种情况下如何计算出来的。
    发表于 02-26 07:38

    为什么tl431的环路仿真与理论计算不符?

    大佬们,想请教一下,为什么用pspices仿真出来的TL431环路会少了一个零极点啊?第一幅图是pspices仿真的bode图,F1是流控流器件。第二幅图是Mathcad计算出来的数据与图像
    发表于 02-21 22:36

    请问tmp006温度传感计算目标温度时候,单位是什么?

    用过tmp006的朋友,请问在计算目标温度的时候,本地温度和传感电压这两个值单位分别用什么?计算出来的温度单位又是什么?我本地温度没有问题,就不知道IR温度怎么计算
    发表于 02-10 08:01

    LMP90100放大倍数大于等于16后计算的电压不对,是哪里出了问题?

    *4089.0/8.0/8388608.0 计算出来的电压与实际电压一致但是有0.1mv的跳动????。如下图 问题2 数据输出速度214.65SPS,放大倍数8,使用缓冲(CH0_CONFIG
    发表于 01-10 08:24

    用ADS1115结果采样出来的只有65536,请问这是怎么回事啊?

    一直是65536,该怎么办啊?我用这个公式再讲result值计算出来显示 volue = sum/32768*3.3;volue就计算显示数据了,不知道对不对,麻烦各位大神帮我看看吧,先谢谢了~!!!!
    发表于 01-10 07:19

    ADS1146芯片采集电压,用SPI通信读到是数据计算出来和用电压表测得的值总有误差,怎么解决?

    我用到ADS1146芯片采集电压,我的芯片REF电压是0.6163V,芯片工作电压是3.3V。用SPI通信读到是数据计算出来和用电压表测得的值总有误差,最大误差是3mv,误差是线性误差。请问是什么原因导致的呢?如果是需要校准 那么怎么校准呢?
    发表于 01-07 06:34

    使用430驱动TMP006红外传感计算出来的Tobj一直是358~360之间波动,为什么?

    使用430驱动TMP006红外传感,各寄存读取数据正常,经过方程式计算后Tdie正常在26.5度左右,Vobj数值8.18312447E-3 计算出来的Tobj一直是358~36
    发表于 01-02 07:13