0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

纯跟踪算法用于无人车自动泊车

新机器视觉 来源:CSDN 2023-01-05 15:29 次阅读

	

目的

使用简单的“纯跟踪算法”实现无人车自动泊车或者位姿调整。在泊车或者工业场景,如果空间不够,那么车辆经常需要做一些大角度的转向或者倒车,例如叉车。

这些场景与一般的道路行驶场景可能有所区别,道路行驶一般只考虑前进方向的高速行驶,并且转向曲率不会太大。泊车场景恰好相反,曲率大、速度慢,而且伴随行驶方向的变化。

道路行驶下的跟踪已经被研究的比较深入了,那么道路行驶使用的跟踪算法还适用于倒车场景吗?本文我们来研究一下这个问题。

c58d945a-8cc9-11ed-bfe3-dac502259ad0.gif

c5f85ef2-8cc9-11ed-bfe3-dac502259ad0.gif

Reeds-Sheep曲线

假设无人车的运动路径是已知的,笔者使用 https://github.com/hbanzhaf/steering_functions 中提出的曲率连续的改进Reeds-Sheep曲线生成路径。

程序输出的路径是一系列离散的点,点之间的距离可以自定义,笔者选择每5毫米一个点,程序中设置DISCRETIZATION=0.005。

路径采用nav_msgs::Path消息发出。

纯跟踪算法

纯跟踪算法(Pure Pursuit)首先要指定一个被跟踪的目标点。

原始版本的纯跟踪算法只讨论了跟踪无人车前方的点,对于Reeds-Sheep曲线这种包含运动方向变化的曲线,无人车既需要前进也需要后退,但是想实现后退也非常简单。

笔者将被跟踪的目标点称为局部目标(local goal)无人车真正最终的静态目标点则称为全局目标(global goal)。

纯跟踪需要无人车的定位,仿真时假设这个定位信息ROS中的/base_pose_ground_truth消息给出。局部目标的计算方式是,遍历路径,找到第一个离无人车≥ d l 的路径点。

d l 就是前视距离,d l 越小跟踪精度越高,但是越容易导致震荡。机器人在运动时,这个局部目标也会更新。

如果找到的局部目标落在了无人车的后方,此时意味着无人车需要后退,只需要将速度取负值即可,前轮转角不用变。

出现的问题

1.转折点

在仿真时出现了一些问题。首先,最困难的是对于尖点(cusp)怎么处理。因为很多情况下,Reeds-Sheep曲线都包含尖点,在尖点处车辆会改变运动方向。

如果使用纯跟踪算法跟踪这个路径,那么在尖点处会出现一个问题。因为纯跟踪算法总要指定一个跟踪点,这个跟踪点一般在车辆前方或者后方一定距离(d l )处。

在向尖点运动时,车辆不会正好处于尖点上,而是提前离开。下图中的d l = 0.2后面也采用这一数值。

图中的黄点是被跟踪的局部目标,红色点表示无人车后轮轴中心处的实时位置。

c62a08f8-8cc9-11ed-bfe3-dac502259ad0.png

这就导致车辆没有完全位于路径上,进而导致后面的跟踪出现横向偏差(如下图所示),即使采用曲率连续的Reeds-Sheep曲线版本也没有用。

c63d0d5e-8cc9-11ed-bfe3-dac502259ad0.png

这是纯跟踪算法本身的问题吗?不是,纯跟踪算法完全可以跟得上,我们为了安全通常把输出角度给限幅了,如果解除限幅你就会发现纯跟踪算法完全可以准确的跟踪。

但是实际使用时我们又不可能解除限幅,所以怎么解决这个问题呢?

一种是直接增大一点Reeds-Sheep曲线的最小转向半径,令其略大于车辆的真实最小转向半径,笔者尝试增加了约10%,跟踪情况如下图。

另一种方法是增加尖点(cusp)部分的长度,这可以通过改变主程序(steering_functions_node.cpp)中的sigma_max_变量实现,sigma_max_越小,过渡部分越长,最好大于d l 试验发现取sigma_max_=0.5左右就可以。

c6605dae-8cc9-11ed-bfe3-dac502259ad0.png

控制指令如下图所示。

c677c1ba-8cc9-11ed-bfe3-dac502259ad0.jpg

速度单独进行规划,然后叠加到路径上,如下图所示。

c68636fa-8cc9-11ed-bfe3-dac502259ad0.png

c69db97e-8cc9-11ed-bfe3-dac502259ad0.gif

c6b5e92c-8cc9-11ed-bfe3-dac502259ad0.jpg

2.定位误差

前面的控制都假设定位是完美的,不存在定位误差。如果加入定位误差,纯跟踪算法的表现会怎么样呢?

我们用随机数来模拟定位误差,定位误差一般是正太分布的,因此用正态分布函数std::normal_distribution生成随机数,均值总是取0,标准差决定了误差的范围。

首先取小的标准差—— 1mm,无人车的表现如下图所示,无人车的跟踪效果比较好。

c6c589cc-8cc9-11ed-bfe3-dac502259ad0.png

但是前轮转角的变化却非常剧烈,如下图所示。这还仅仅是1mm左右的误差,这在实际中是几乎不可能达到的。

c6e30466-8cc9-11ed-bfe3-dac502259ad0.png

标准差为1cm时的表现如下图所示,已经产生了明显的横向跟踪偏差。

c6ff45f4-8cc9-11ed-bfe3-dac502259ad0.png

此时前轮转角已经惨不忍睹了,如下图所示,这还是1cm左右的误差,实际中无人车的定位要达到1cm也是很困难的。

c72033ae-8cc9-11ed-bfe3-dac502259ad0.png

标准差为5cm时的表现如下图所示,这个误差是一般室外卫星定位的误差范围,也就是常见的误差,此时无人车彻底无法跟踪。

c731056c-8cc9-11ed-bfe3-dac502259ad0.png

不仅前轮转角更疯狂了,而且由于横向偏差已经超过了前视距离d l ,局部目标已经出现在无人车侧面了,导致无人车完全无法跟踪了,如下图所示。

这说明纯跟踪算法对定位误差是极其敏感的,在实际应用时这是个非常严重的问题。

c74351f4-8cc9-11ed-bfe3-dac502259ad0.png

算法理解

为了易于理解纯跟踪算法,笔者用Mathematica设计了一个小程序,你可以用鼠标拖动目标点(绿色点),并观察前轮的转角,如下图。

目标点是纯跟踪算法中的核心概念,这个目标点是人为设计或者选择的。跟踪性能的好坏不仅取决于控制参数的选择,目标点的选择也起到重要的作用。

当目标点选取的不好时,例如距离无人车当前位置过近,则会出现控制量剧烈变化。

c752bedc-8cc9-11ed-bfe3-dac502259ad0.gif

你也可以用鼠标拖动无人车的参考点,观察前轮的转角,如下图。从图中可以发现,在距离目标比较近时,纯跟踪算法的表现很糟糕,参考点位置有一点点改变都会导致前轮转角剧烈变化。

但是无人车的定位本身是必然存在偏差的,所以纯跟踪算法在前视距离短时稳定性并不好。

c8880c8a-8cc9-11ed-bfe3-dac502259ad0.gif

cuboid[center_: {0, 0}, dim_, radius_: 0] := Rectangle[center - dim/2, center + dim/2, RoundingRadius -> 0.01];
move2D[shape_, pose_] := Translate[Rotate[shape, pose[[3]], {0, 0}], pose[[1 ;; 2]]];
L = 1.64; 
[Delta]max = 25 Degree ;
bicycle[pose_, [Delta]_] := {
  rearWheel = cuboid[{0, 0}, {0.4, 0.1}, 0.1];
  frontWheel = move2D[rearWheel, {L, 0, [Delta]}];
  trunk = cuboid[{L/2, 0}, {L, 0.02}, 0.1];
  move2D[{Blue, frontWheel, rearWheel, Black, trunk, Red, Circle[{L, 0}, 0.22, {0, [Delta]}]}, pose]
  };
Manipulate[
 pose = Flatten@{p, [Theta]};
 dirvec = AngleVector[[Theta]];
 vertvec = {-dirvec[[2]], dirvec[[1]]};
 p1 = p + L*dirvec;
 dl = Norm[goal - p];
 [Alpha] = VectorAngle[goal - p, {1, 0}] - [Theta];
 [Delta] = ArcTan[2*L*Sin[[Alpha]]/dl];
 R = Abs[dl/2/Sin[[Alpha]]];
 c = p + Sign[[Alpha]]*R*vertvec;
 a1 = -VectorAngle[p - c, {1, 0}];
 a2 = -VectorAngle[goal - c, {1, 0}];
 Graphics[{bicycle[pose, [Delta]], Point[c], AbsoluteThickness[1], 
  Line[{p1, p1 + AngleVector[[Theta] + [Delta]]*0.3}], AbsoluteDashing[{6, 3}], Black, Line[{p, p1 + dirvec*0.3}], Gray, Line[{p, c}], Line[{c, goal}], Line[{goal, p}], Line[{c, p1}], Orange, Circle[c, R(*,{a1,a2}*)], AbsolutePointSize[8], White, Point[p], Red, Point[c], Darker@Green, Point[goal], Red, Text[Style[ "[Delta]=" <> ToString@Round[[Delta]*180/Pi, 0.01] <> "[Degree]", FontSize -> 16], p1 + dirvec*0.5], Text["!(*SubscriptBox[(d), (l)])=" <> ToString@Round[dl, 0.01], (p + goal)/2 + {0, 0.1}]}, 
 ImageSize -> 600, PlotRange -> 1.5 {{-1.5, 1.5}, {-0.5, 1.5}}, 
 Axes -> False], {{p, {0, 0}}, Locator, Appearance -> Graphics@Point[{0, 0}]}, {{goal, {0.16, 0.12}}, Locator, Appearance -> Graphics[{Green, Point[{0, 0}]}]}, {{[Theta], Pi/6}, 0, 2 Pi, 0.01}, TrackedSymbols :> True, Initialization :> {goal = {0.16, 0.12}}]

审核编辑 :李倩


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 跟踪算法
    +关注

    关注

    0

    文章

    40

    浏览量

    12984
  • 自动泊车
    +关注

    关注

    0

    文章

    93

    浏览量

    13567
  • 无人车
    +关注

    关注

    1

    文章

    294

    浏览量

    36279

原文标题:纯跟踪算法用于无人车自动泊车

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    极氪007公测启动,量产机械车位自动泊车业内首创

    极氪007固体系统6.1版带来了五项先进的智能泊车功能,包括车位识别、复杂停车位泊入、泊车效率提升以及无划线区泊车等多个棘手问题都得到了解决。
    的头像 发表于 03-27 14:32 112次阅读

    特斯拉全新自动泊车功能上线,可平行泊车

     据Not a Tesla App报道,此次2024年2月11日的软件更新新增内容包括自动泊车以及平行泊车等功能。在行车时,车辆屏幕将标示出可用车位,并以红色P标记做特殊提示;同时,驾驶员亦有权自行选择其它高亮显示的车位。
    的头像 发表于 03-22 11:16 187次阅读

    自动泊车和遥控泊车的区别

    存在着显著的差异。本文将比较自动泊车和遥控泊车的区别。 一、自动泊车技术 自动
    的头像 发表于 01-31 13:43 568次阅读

    告别停车烦恼:自动泊车技术引领新时代

    随着科技的不断发展,自动驾驶技术已经成为汽车行业的一个重要研究方向。其中,自动泊车技术作为自动驾驶技术的一个重要应用场景,受到了广泛关注。自动
    的头像 发表于 01-05 10:02 153次阅读
    告别停车烦恼:<b class='flag-5'>自动</b><b class='flag-5'>泊车</b>技术引领新时代

    知语云:低慢小无人机如何反制管制监测行为?方式方法又是什么?

    ,ArtemRozantsev等人采用深度学习的方法,实现了用于无人机对小视场内无人机的探测等。2018年,Opromolla等等人采用模板匹配、形态学滤波器等算法实现了用
    发表于 11-20 17:07

    无人直升机的设计和组装资料

    ] ,神经网络 [4] ,[13]和学习控制 [5],已用于设计无人直升机的飞行控制规律。提高自动着陆,悬停和自动飞行的性能。我们的动机是为了发展一个
    发表于 09-20 06:25

    如何设计时序图—以APA自动泊车系统为例

    时序图是阐明软件设计的利器,也是系统架构的必备武器。今天我们以APA自动泊车系统为例来聊聊如何设计符合绘制原则又通俗易懂的时序图。
    的头像 发表于 09-14 11:20 752次阅读
    如何设计时序图—以APA<b class='flag-5'>自动</b><b class='flag-5'>泊车</b>系统为例

    用于自动泊车的超声波泊车传感器

    用于自动泊车的超声波泊车传感器
    的头像 发表于 08-23 10:52 928次阅读
    <b class='flag-5'>用于</b><b class='flag-5'>自动</b><b class='flag-5'>泊车</b>的超声波<b class='flag-5'>泊车</b>传感器

    自动泊车是如何实现的 自动泊车系统组成及技术原理图解

    自动泊车技术大部分用于顺列式驻车情况。顺列式驻车要求汽车沿路边平行停放,与其他停好的汽车排成一条直线。大多数汽车用户需要比车身长出约1.8米的停车位,才能顺利完成顺列式驻车,尽管有些熟练驾驶员只需要更少的空间。
    发表于 08-03 09:55 2392次阅读
    <b class='flag-5'>自动</b><b class='flag-5'>泊车</b>是如何实现的 <b class='flag-5'>自动</b><b class='flag-5'>泊车</b>系统组成及技术原理图解

    行易道科技基于车载SAR毫米波雷达成像技术助力自动泊车

    作为自动驾驶应用场景中最先被推广和商业化落地的自动泊车功能,目前是在一些限定环境下实现了功能跑通。面对多种多样的复杂停车场场景,系统需要不断增强感知算法能力或寻求新的传感器技术,来提升
    的头像 发表于 07-31 15:24 714次阅读

    自动驾驶4WS车辆路径跟踪最优控制算法仿真

    针对自动驾驶车辆高速主动转向工况下传统的控制算法的控制效果容易出现较多的超调量和较长调节时间的问题,提出了基于 车辆动力学模型的轨迹预测跟踪主动转向控制算法,并基于轮胎侧偏刚度非线性
    发表于 06-02 11:51 0次下载
    <b class='flag-5'>自动</b>驾驶4WS车辆路径<b class='flag-5'>跟踪</b>最优控制<b class='flag-5'>算法</b>仿真

    泊车雷达原理是什么?

    泊车雷达系统的智能技术不能超越物理定律规定的极限,只能在系统极限范围内工作。切勿因为泊车雷达系统提高了舒适性而冒险行驶。泊车雷达系统不能代替驾驶员的注意力。
    的头像 发表于 05-17 16:38 922次阅读

    DRIVE Labs“常学常新”系列「终点站」:寻找车位与自动泊车

    DRIVE Labs 系列文章 终点站: 寻找车位与自动泊车 始 发 站 | 自 动 驾 驶 基 础 功 能 第 二 站 | 基 本 路 况 感 知 第 三 站 | 读 懂 交 通 标 志 与 信 号 灯 第 四 站 | 监 控 车 外 的 风 吹 草 动 第 五 站 |
    的头像 发表于 05-11 20:16 235次阅读
    DRIVE Labs“常学常新”系列「终点站」:寻找车位与<b class='flag-5'>自动</b><b class='flag-5'>泊车</b>

    无人机视觉跟踪系统解决方案-米尔基于XCZU3EG/XCZU4EV/XCZU5EV核心板

    近些年来,随着自动控制领域的发展,摄像镜头的工艺和视觉识别算法越来越完善,基于这一基础,无人机视觉跟踪技术成为炙手可热的研究领域。什么是无人
    的头像 发表于 05-11 10:05 843次阅读
    <b class='flag-5'>无人</b>机视觉<b class='flag-5'>跟踪</b>系统解决方案-米尔基于XCZU3EG/XCZU4EV/XCZU5EV核心板

    基于自动泊车自动驾驶控制算法设计与研究

    介绍了自动泊车系统的硬件架构,在此基础上,对自动泊车控制算法进行了设计与研究,包括APA算法功能
    的头像 发表于 05-04 11:02 931次阅读
    基于<b class='flag-5'>自动</b><b class='flag-5'>泊车</b>的<b class='flag-5'>自动</b>驾驶控制<b class='flag-5'>算法</b>设计与研究