0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

EMC基础:去耦电容的有效使用方法

电子工程技术 来源:电子工程技术 2023-01-03 10:30 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

要点2:降低电容的ESL

去耦电容的有效使用方法的第二个要点是降低电容的ESL(即等效串联电感)。虽说是“降低ESL”,但由于无法改变单个产品的ESL本身,因此这里是指“即使容值相同,也要使用ESL小的电容”。通过降低ESL,可改善高频特性,并可更有效地降低高频噪声。

・即使容值相同也要使用尺寸较小的电容

对于积层陶瓷电容(MLCC),有时会准备容值相同但尺寸不同的几个封装。ESL取决于引脚部位的结构。尺寸较小的电容基本上引脚部位也较小,通常ESL较小。

1c1dd710-8a42-11ed-bfe3-dac502259ad0.png

上图是容值相同、大小不同的电容的频率特性示例。如图所示,更小的1005尺寸的谐振频率更高,在之后感性区域的频率范围阻抗较低。这正如在“电容的频率特性”中所介绍的,电容的谐振频率是基于以下公式的,从公式中可见,只要容值相同,ESL越低谐振频率越高。另外,感性区域的阻抗特性取决于ESL,这一点也曾介绍过。

1c3d499c-8a42-11ed-bfe3-dac502259ad0.png

关于噪声对策,当需要降低更高频段的噪声时,可以选择尺寸小的电容。

・使用旨在降低ESL的电容

积层陶瓷电容中,有些型号采用的是旨在降低ESL的形状和结构。

1c506374-8a42-11ed-bfe3-dac502259ad0.png

如图所示,普通电容的电极在短边侧,而LW逆转型的电极则相反,在长边侧。由于L(长度)和W(宽度)相反,故称“LW逆转型”。是通过增加电极的宽度来降低ESL的类型。

三端电容是为了改善普通电容(两个引脚)的频率特性而优化了结构的电容。三端电容是将双引脚电容的一个引脚(电极)的另一端向外伸出作为直通引脚,将另一个引脚作为GND引脚。在上图中,输入输出电极相当于两端伸出的直通引脚,左右的电极当然是导通的。这种输入输出电极(直通引脚)和GND电极间存在电介质,起到电容的作用。

将输入输出电极串联插入电源信号线(将输入输出电极的一端连接输入端,另一端连接输出端),GND电极接地。这样,由于输入输出电极的ESL不包括在接地端,因此接地的阻抗变得非常低。另外,输入输出电极的ESL通过在噪声路径直接插入,有利于降低噪声(增加插入损耗)。

通过在长边侧成对配置GND电极,可抑制ESL;再采用并联的方式,可使ESL减半。

基于这样的结构,三端电容不仅具有非常低的ESL,而且可保持低ESR,与相同容值相同尺寸的双引脚型电容相比,可显著改善高频特性。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电极
    +关注

    关注

    5

    文章

    880

    浏览量

    28291
  • 陶瓷电容
    +关注

    关注

    4

    文章

    466

    浏览量

    24889
  • 去耦电容
    +关注

    关注

    12

    文章

    325

    浏览量

    23471

原文标题:EMC基础:去耦电容的有效使用方法-要点2

文章出处:【微信号:EngicoolArabic,微信公众号:电子工程技术】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    【「高速数字设计(基础篇)」阅读体验】第六章 电容的容量需求分析

    不同设计场景 倍乘系数法:适合负载电容明确的简单电路,快速出结果; 功耗电容法:解决复杂IC负载电容难测的问题,通过功耗反推更具实操性; 电压波动约束法:从电源噪声指标倒推,精准度高。 这章把
    发表于 11-19 20:48

    【「高速数字设计(基础篇)」阅读体验】第五章 电容

    最近在啃《高速数字设计》,第五章“电容:远交近攻”把高速电路里电源噪声的问题讲透了,对于做硬件设计的同学来说,这章简直是“电源完整性”的入门必读。 为啥
    发表于 11-19 20:35

    【「高速数字设计(基础篇)」阅读体验】+第五章电容阅读体验

    噪声,电容通过低阻抗路径将噪声旁路至地,为芯片提供干净的直流电压。示例:数字电路中快速开关信号产生的高频噪声可通过去电容
    发表于 11-06 17:01

    利用软件的方法解决EMC问题

    一前言随着信息技术和半导体技术的快速发展,电子产品的类型和功能模块日益多样化,提讯传输速率也日益提高,产品的EMC问题也是越来越多样化,解决EMC问题的方法多种多样,常见的方法硬件层面
    的头像 发表于 10-28 11:35 164次阅读
    利用软件的<b class='flag-5'>方法</b>解决<b class='flag-5'>EMC</b>问题

    EMC设计—PCB高级EMC设计

    目录 EMC理论基础 EMC测试实质 PCB的接地设计 PCB内部EMC设计 EMC分析
    发表于 05-28 16:54

    时源芯微 EMC抗扰措施

    芯微TSI集成滤波器。 机壳接地 :电机机壳接地可微小改进EMC,不能替代元器件EMI抑制。 优化PCB设计 :最大化PCB接地面积降接地电感;组件按功能分组,信号走线在规定区域。 合理排PCB层 :多层PCB层排列影响EMC,如4层PCB应交替接地层与信号层。 添加
    的头像 发表于 05-19 17:02 370次阅读

    PCB设计如何用电源电容改善高速信号质量

    ,高速先生则默默的看向本文的标题:如何用电源电容改善高速信号质量? 没错,高速先生做过类似的案例。 如前所述,我们的Layout攻城狮经验丰富,在他的努力下,找到了另外一个对比模型,信号管脚周围只
    发表于 05-19 14:28

    PCB设计如何用电源电容改善高速信号质量

    PCB设计电源电容改善高速信号质量?!What?Why? How?
    的头像 发表于 05-19 14:27 504次阅读
    PCB设计如何用电源<b class='flag-5'>去</b><b class='flag-5'>耦</b><b class='flag-5'>电容</b>改善高速信号质量

    ​车联网V2X通信:贴片电容信号完整性优化与EMC设计

    信号等多源干扰。作为通信链路电源与信号的核心元件,贴片电容的信号完整性(SI)与电磁兼容性(EMC)性能成为保障通信质量的关键。东莞市平尚电子科技有限公司(平尚科技)通过AEC-Q
    的头像 发表于 05-12 15:22 536次阅读
    ​车联网V2X通信:贴片<b class='flag-5'>电容</b>信号完整性优化与<b class='flag-5'>EMC</b>设计

    面试常考:为什么芯片电源引脚的电容一般选100nF?

    Part 01 前言 相信搞硬件的兄弟一般都见过芯片电源引脚一般会放一个电容,而且这个电容一般是100nF,而且芯片电源引脚旁的电容内一般还叫做
    发表于 04-22 11:38

    电容EMC设计中的应用技巧

    EMC设计中,电容是应用最广泛的元件之一,主要用于构成各种低通滤波器或用作电容和旁路电容
    发表于 03-03 16:17

    干货推荐!电容的基本知识

    “ 如何稳定数字电路的供电电压?为什么说大部分网上的建议都不太靠谱?本文将理论结合实际,介绍电容使用方法。” 二十年前,要制造一台便携式音乐播放器,你必须把几百个电子元件拼凑在
    发表于 02-17 11:21

    电容的基本知识

    “  如何稳定数字电路的供电电压?为什么说大部分网上的建议都不太靠谱?本文将理论结合实际,介绍电容使用方法。 ” 二十年前,要制造一台便携式音乐播放器,你必须把几百个电子元件拼凑
    的头像 发表于 02-13 11:14 1224次阅读
    <b class='flag-5'>去</b><b class='flag-5'>耦</b><b class='flag-5'>电容</b>的基本知识

    SN74AVC8T245PW这种电平转换芯片VCCA和VCCB引脚需要加电容吗?

    SN74AVC8T245PW这种电平转换芯片VCCA和VCCB引脚需要加电容吗? 如果需要,加多大的比较合适呢?多大容值和什么封装形式比较好些? 小白一枚 谢谢
    发表于 02-05 10:14

    什么是?为什么要选什么是

    通过添加电容器减少电源噪声,陶瓷电容因其高频响应好、ESR和ESL低,适合作为
    的头像 发表于 01-03 10:29 1731次阅读
    什么是<b class='flag-5'>去</b><b class='flag-5'>耦</b>?为什么<b class='flag-5'>去</b><b class='flag-5'>耦</b>要选什么是<b class='flag-5'>去</b><b class='flag-5'>耦</b>?