0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

在熔盐中利用液态金属锡阴极实现整体碳中和电化学还原CO2

清新电源 来源:清新电源 2022-12-30 10:38 次阅读

NO.1

【研究背景】

水溶液中CO2的电化学还原受到竞争性析氢和CO2低溶解度的限制。最近的研究表明,熔融盐可以作为理想的电解质,捕获、激活并将CO2转化为碳材料和碳氢化合物。这是由于熔盐中CO2和O2−之间的热力学自发反应,从而使CO2在熔盐中的溶解度增加到每升几摩尔。

熔盐还具有比水溶液更大的电化学窗口,使其不容易受到电解质分解的影响。然而,由于转换效率和产品功能的不足,实现碳中和熔盐电解CO2仍然具有挑战性。 工业提铝是一种自热、高效、高产的电化学过程。液态金属阴极的利用集成了高表面反应性和强去极化效应。

用液态金属阴极共同还原CO2和金属氧化物(MOx)可以促进精细金属-碳(M-C)杂化体的生成,正如在800°C下通过热还原SnO2生成精细Sn(熔点在232°C)粒子所预测的那样。由于表面张力驱动液态Sn的团聚作用,不能直接将Sn颗粒与碳片混合制备Sn-C杂化产物。

因此,本文提出了一种碳捕获和利用技术,即在液态金属阴极上使用熔盐电还原CO2,对工业烟气中的CO2进行高通量吸收转化,有望提高转化效率和产品功能,其中液态金属/MOx/熔盐界面是关键实现因素。

NO.2

【成果简介】

武汉大学肖巍教授将液态锡阴极引入熔盐中实现CO2的电化学还原制备核壳型Sn@C。液态锡阴极加快反应动力学和Sn@C核壳结构的形成,获得了高于84%的CO2固定电流效率和Sn@C的高可逆锂存储容量。该工艺集成了CO2转换和金属碳材料的无模板合成,实现了CO2的整体碳中和电化学还原。

NO.3

【研究亮点】

1. 原位生成的Li2SnO3/C作为Sn@C形成的模板; 2. 其他低熔点金属如锌和铋,证明了这种策略的通用性。

NO.4

【图文导读】

0fcab456-87cc-11ed-bfe3-dac502259ad0.png

图 1. (a)液态金属阴极的候选金属材料的性能总结。(b) MOx与熔盐分解电压。(c) M@C产生的示意图。

电化学固定熔盐中CO2的液态金属阴极的选择规则基于以下标准(如图1a,b所示):第一,候选金属熔点应低于电解池的工作温度,以保持液态;第二,MOx的分解电压应低于熔体的分解电压,避免电解液的分解。以Li2CO3熔体体系为例,将能将Li2CO3熔融物热还原为MOx和碳的金属记为第一类金属(M1 = Sn、Zn、Ga、Ba、Al和Mg),其余金属记为第二类金属(M2 = Te、Bi、Pb、Sb、Cd和In)。

在图1c中,提出了一种从液态金属阴极上CO2电还原制备高功能M-C杂化体的一般策略,表明液态M1阴极上熔盐中CO2的电化学固定诱导了原位M1Ox/C界面和无模板生成核-壳M-C球(M1@C)。当使用液态M2阴极时,缺少原位M2Ox/C界面会导致CO2单独还原为碳,而M2Ox/C阴极的电还原(图1c中的非原位M2Ox/C)会产生M2@C。

10090bc0-87cc-11ed-bfe3-dac502259ad0.png

图 2. (a)使用液态锡阴极电化学固定CO2的示意图。(b)液态锡阴极的结构。(c)电解过程中阳极O2浓度(ΔC)。(d) SEM,(e, f) TEM,(g) Sn@C的元素映射。(h)通过热电化学反应耦合形成Sn@C的示意图。

采用Sn作为M1液态金属阴极,在熔盐中电化学固定CO2,制备Sn@C(图2)。在共晶Li2CO3-Na2CO3-K2CO3熔盐中,2.2 V下,液态锡阴极和镀铂钛阳极之间进行恒压电解,温度为550℃,电解时间为3小时(图2a)。由于密度的差异,熔盐与液态Sn的界面处形成了阴极Sn@C(图2b),阳极处发生了O2的析出(图2c)。

扫描电子显微镜(SEM)和透射电子显微镜(TEM)(图2d-f)显示了阴极产物的核壳结构,Sn@C通过元素映射(图2g)得到了验证。Sn@C的形成机制验证如下。液态Sn与熔融Li2CO3发生热反应,自发生成Li2SnO3中间体。Li2SnO3的分解电压高于Li2CO3的分解电压,而低于Li2O的分解电压,使得Sn和C同时生成而避免Li的沉积。原位生成的Li2SnO3/C被检测到,这指导了后续的无模板生成Sn@C(图2h)。

105e99be-87cc-11ed-bfe3-dac502259ad0.png

图 3. (a) Sn@C的CV。(b)电化学阻抗。(c) 100 mA g−1时的循环性能,(d) Sn@C、空心碳和第二循环的商业锡的倍率和(e) 500 mA g−1时的循环性能。

Sn@C电极的循环伏安图如图3a所示,在0.25 ~ 0.75 V vs. Li+/Li之间的阴极峰是Li-Sn合金的形成,而在0.60 ~ 0.80 V vs. Li+/Li之间发生阳极脱合金。在第一个循环中,1.7 V vs. Li+/Li的峰值是固体电解质界面(SEI)的不可逆形成。与Sn和空心碳相比,Sn@C球表现出更小的电荷转移电阻(图3b),证明了Sn核和碳壳的协同效应。

因此,Sn@C在循环性能和速率能力(图3c,d)方面优于商业锡和空心碳。Sn@C的这种优异性能归因于碳壳中的锡核,它减少了合金化/脱合金过程中的结构应力,从而提高了耐久性(图3e)。

10b9fe6c-87cc-11ed-bfe3-dac502259ad0.png

图 4. (a)使用液态Zn、液态Sn和固体Ni阴极配合风/热发电固定CO2时的碳排放。(b)2021年中国的电力结构。(c)液态Zn、液态Sn和固体Ni阴极进行CO2固定后的碳捕获和碳排放。

生命周期评估(LCA)表明当使用100%热功率时,使用液态锡阴极(7.51 tCO2/tC)和液态锌阴极(5.94 tCO2/tC)的等效CO2排放量远低于固体镍阴极(13.95 tCO2/tC)(图4a)。考虑到2021年中国实际电力结构(图4b),其中绿色电力(包括太阳能、风能、水电和核电)和火电分别占45.4%和54.6%,使用液态锡和液态锌阴极可实现4.91和3.51 tCO2/tC的归一化当量CO2排放,优于固体镍阴极(即8.15 tCO2/tC,如图4c)。随着中国绿色电源比例的不断提高,到2034年,使用液态锡阴极可实现碳中和,这比应用固体镍阴极早了7年。

NO.5

【总结与展望】

综上所述,一种通用的液态金属阴极策略已被证明是一种有效的电化学还原熔盐中的CO2,用于合成具有高性能储能的金属-碳杂化体。这种方法实现整体碳中和的可行性已经通过实验研究和LCA得到了验证。独特的液态锡阴极/熔盐界面促进了Li2SnO3/C中间体的原位生成,从而提高了CO2电还原的电流效率(84.20%)和随后的无模板生成核壳Sn@C,具有出色的锂存储能力(634 mAh g−1)。

在熔盐中使用液态金属阴极对CO2进行电化学固定,提高了CO2转换效率,增强了CO2衍生材料的锂存储能力。这两个因素都有助于提高间歇性可再生能源的有效利用,进而提高全面碳中和方案的可行性。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 固体电解质
    +关注

    关注

    0

    文章

    44

    浏览量

    8315

原文标题:武大Angew:在熔盐中利用液态金属锡阴极实现整体碳中和电化学还原CO2

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    压缩空气储能属于电化学储能技术吗

    压缩空气储能并不属于电化学储能技术。电化学储能通常指的是通过电池或其他电化学设备的化学反应来存储和释放能量的技术,例如锂离子电池。
    的头像 发表于 04-26 15:21 81次阅读

    电化学储能和化学储能一样吗

    电化学储能和化学储能是两种不同的储能方式,它们在能量存储的原理、应用场景、技术特点等方面存在显著差异。
    的头像 发表于 04-26 15:18 99次阅读

    电化学储能的特点包括哪些?电化学储能的效率?

    电化学储能是一种通过电池或其他电化学设备的化学反应来存储和释放能量的技术。它在电力系统、新能源汽车、便携式电子设备等领域有着广泛的应用。
    的头像 发表于 04-26 15:15 91次阅读

    什么是电化学储能?电化学储能技术主要包括哪些?

    电化学储能是一种通过电化学反应将电能转换为化学能进行存储,并在需要时再将化学能转换回电能的技术。
    的头像 发表于 04-26 15:09 82次阅读

    什么是电化学电容器?电化学超级电容器有什么特点?

    什么是电化学电容器?电化学超级电容器有什么特点? 电化学电容器是一种储能装置,它利用电化学反应将电能转化为化学能,进而存储电荷。与传统的电容
    的头像 发表于 03-05 16:30 246次阅读

    LabVIEW开发新型电化学性能测试设备

    LabVIEW开发新型电化学性能测试设备 开发了一种基于Arduino和LabVIEW的新型电化学性能测试装置,专门用于实验电池,特别是锂硫(Li-S)技术领域的评估。这种装置结合了简单、灵活
    发表于 12-10 21:00

    分享一款能连arduino仿真的电化学软件

    分享一款能连arduino仿真的电化学软件,能模拟多种检测方法,适合仿真环境文件如下:
    发表于 10-10 06:52

    基于一种增强型光谱电化学装置

    光谱电化学(SEC)测量在分析化学中起着至关重要的作用,利用透明或半透明电极对电化学过程进行光学分析。电化学读数提供了有关电极状态的信息,而
    的头像 发表于 09-26 09:11 676次阅读
    基于一种增强型光谱<b class='flag-5'>电化学</b>装置

    电化学CO2甲烷化的进展与挑战

    CO2还原为具有附加产值的化合物具有极大的经济效益,同时也能降低人类对化石燃料的依赖以及缓解温室效应。
    的头像 发表于 09-25 10:02 857次阅读
    <b class='flag-5'>电化学</b><b class='flag-5'>CO2</b>甲烷化的进展与挑战

    无碱金属的酸性电解液中CO2还原研究

    在酸性电解质中进行二氧化碳电化学还原实现二氧化碳高效利用的一种可行策略。
    的头像 发表于 09-22 09:26 576次阅读
    无碱<b class='flag-5'>金属</b>的酸性电解液中<b class='flag-5'>CO2</b><b class='flag-5'>还原</b>研究

    研发电化学电化学发光双模式适配体传感器!

    物、人类和动物的健康和安全构成严重威胁。因此,AOH的灵敏监测对确保食品安全和质量控制具有重要的研究意义。 石河子大学洪成林和魏忠开发了一种利用双功能纳米材料聚苯二胺(PoPD)/Ru-Au的双模适配体传感器。该传感器同时提供电化学(EC)和
    的头像 发表于 08-21 17:18 946次阅读
    研发<b class='flag-5'>电化学</b>和<b class='flag-5'>电化学</b>发光双模式适配体传感器!

    纳米片共价键合石墨烯实现高效CO2转化!

    电化学 CO2还原反应 (CO2RR) 是一种很有前途的技术,可以通过在增值产品中储存清洁能源来缓解环境和能源问题。
    的头像 发表于 07-18 17:21 439次阅读
    纳米片共价键合石墨烯<b class='flag-5'>实现</b>高效<b class='flag-5'>CO2</b>转化!

    大面积二维Cu2Te垂直阵列催化剂助力CO2还原

    铜箔表面可控生长大面积二维Cu2Te纳米片垂直阵列的化学气相沉积方法,开发了一种能够实现高效电催化还原CO2合成甲烷的金属相二维层状材料催化
    的头像 发表于 07-17 15:23 660次阅读
    大面积二维Cu2Te垂直阵列催化剂助力<b class='flag-5'>CO2</b>电<b class='flag-5'>还原</b>

    电化学传感器原理及应用 全面了解电化学化学传感器

      电化学传感器是通过电化学反应过程的电信号(一般包括电位、电流、阻抗等)对待测对象进行检测的一种化学分析技术。电化学传感器因其对特殊靶标例如血糖、尿酸、乳酸等代谢物、血气、农药残留、
    的头像 发表于 05-31 08:39 2622次阅读
    <b class='flag-5'>电化学</b>传感器原理及应用 全面了解<b class='flag-5'>电化学</b>与<b class='flag-5'>化学</b>传感器

    固定电势在电化学反应中的应用

    电化学界面反应过程中,由于电化学反应界面通常与恒定电极电势的外电极相连,为确保电子的化学势与外电极的电势达到平衡
    的头像 发表于 05-26 09:44 1143次阅读
    固定电势在<b class='flag-5'>电化学</b>反应中的应用