0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

什么是抖动?使用抖动消除量化失真

摩尔学堂 来源:摩尔学堂 作者:摩尔学堂 2022-12-06 15:18 次阅读

了解如何将抖动添加到信号以通过消除量化误差和失真来提高模数转换系统的性能。

有时,电子噪音可能是因祸得福。在本文中,我们将了解“抖动”,它指的是一种将适当的噪声成分添加到信号中以提高A/D(模数)转换系统性能的技术。

什么是抖动?

大多数 EE 都熟悉限制电子电路中噪声水平的方法。过滤是一种常用技术,可用于消除噪声成分或至少限制其带宽。在某些应用中,例如降噪耳机和降噪低噪声放大器 (LNA),我们甚至可以测量主要噪声分量并将其从系统输出中减去以实现所需的性能。

尽管有这些应用,但在模数转换系统中我们需要噪声来提高电路性能。这种信号处理技术,称为抖动,故意将具有适当 PDF(概率密度函数)和 PSD(功率谱密度)的噪声信号添加到 ADC模数转换器)输入(采样和量化之前),以改善某些系统的性能方面。图 1 显示了抖动系统的简化框图(该图表示一种称为非减色抖动的抖动)。

64acd652-7534-11ed-8abf-dac502259ad0.jpg

图 1.显示抖动系统框图的示例图。图片由Analog Devices提供

第一次了解抖动时,可能会发现某种程度的噪声在某些情况下实际上是有帮助的,这违反直觉。抖动技术可用于三个不同的目的:

通过打破量化误差和输入信号之间的统计相关性来提高理想量化器的性能

随机化非理想 ADC 上的DNL(微分非线性)误差模式以提高无杂散动态范围 (SFDR) 性能

通过对缓慢变化的信号进行平均来提高测量分辨率

在本文中,我们将讨论抖动如何通过打破量化误差与输入信号之间的统计相关性来改进理想的量化器,但在此之前,我们需要了解一下 ADC 量化噪声。

ADC 量化误差的高级基础知识

ADC 表示通过多个离散级别的连续范围的模拟值,这固有地增加了称为量化误差的误差。已进行大量研究以充分理解此错误。研究历史实际上可以追溯到 1948 年 WR Bennett 的一篇论文“量化信号的频谱”。今天,众所周知,在某些条件下,量化误差可以建模为一种加性噪声,在两者之间均匀分布±大号小号乙2个LSB2(LSB 表示转换器的最低有效位)。

此外,假定量化噪声为白噪声(即,在直流到 fs/2 的奈奎斯特带宽上均匀分布),总功率等于大号小号乙2个12.平坦频谱特性基于量化误差样本彼此不相关的假设。

在本文中,我们将这种量化误差模型称为“量化噪声模型”。我们将很快讨论量化噪声模型并不总是有效;然而,对于许多实际应用来说,它仍然足够准确。下面的例子说明了为什么处理数据转换器的 EE 喜欢这个模型!

10 位与 12 位 ADC:多少位就足够了?

让我们考虑一个应用,其中 ADC 的参考电压为 2 V。假设 ADC 输入信号的噪声为 1 mV RMS(均方根)。对于 10 位 ADC,LSB 是2个2个10= 1.95 mV,因此,噪声的 RMS 值等于 0.51 LSB。

从量化噪声模型中,我们知道量化操作添加了 RMS 噪声大号小号乙12= 0.29 最低有效位。

如您所见,量化噪声与来自输入的原始噪声相当。要找到系统的总噪声功率,我们应该将两个噪声源的功率相加:

64c71cd8-7534-11ed-8abf-dac502259ad0.png

对该值求平方根,得出总噪声的 RMS 为 0.59 LSB。如果我们的应用不能接受此噪声水平,我们可以提高 ADC 分辨率以降低量化噪声。例如,对于 12 位 ADC,输入噪声为 2.05 LSB RMS。与输入噪声相比,量化噪声 (0.29 LSB) 现在几乎可以忽略不计。对于这个例子,总噪声 RMS 达到 2.07 LSB。12 位系统似乎可以为该应用程序提供足够的分辨率。

有了信号中的总噪声,我们就可以确定交流应用中的信噪比 (SNR) 或测量应用中的最小可检测信号。这里的重点是噪声模型使我们能够轻松地考虑量化过程对系统噪声性能的影响。

作为旁注,值得一提的是,上述讨论隐含地假设 ADC 添加的主要噪声是量化噪声。这并非总是如此。随着我们提高 ADC 分辨率,量化噪声变得越来越小。在某些时候,与 ADC 内由 ADC 内部电路的热噪声和闪烁噪声产生的电子噪声相比,量化噪声可以忽略不计。今天的高分辨率ΔΣ (delta-sigma) ADC就是这种情况。如果量化噪声可以忽略不计,则应考虑ADC的峰峰值输入参考噪声来分析系统噪声性能。

量化误差的频率成分

量化噪声模型的一个含义是误差与输入不相关。为了更好地理解这一点,请考虑图 2 中的波形。

64e4dd54-7534-11ed-8abf-dac502259ad0.jpg

图 2.示例波形。图片由Franco Maloberti提供

上图中的左侧曲线描绘了 10 位量化正弦波的两个周期。右曲线显示量化误差。本例中,采样频率与输入频率之比为150。通过目测可以确认量化误差是周期性的(一个周期用橙色矩形表示)。此外,输入和量化误差信号之间存在相关性。由此,我们知道周期信号的频率成分集中在信号基频的倍数处。这意味着虽然量化噪声模型期望误差具有平坦的频谱,但量化误差具有一些强频率分量。

这是一个普遍问题:如果输入是正弦波并且采样频率是输入频率的倍数,则量化误差与输入信号相关。另一个示例如图 3 所示。

64fb5ed0-7534-11ed-8abf-dac502259ad0.jpg

图 3.显示相关噪声 (a) 和不相关噪声 (b) 的示例图。图片由Analog Devices提供

左侧曲线显示了输入为 2 MHz 正弦波且采样频率为 80 MSPS 时理想 12 位 ADC 的频谱。右侧曲线显示同一 ADC 的频谱,该 ADC 以相同采样频率采样 2.111 MHz 正弦波。正如所料,当采样频率与输入频率之比为整数时,输出端会产生输入频率的不同谐波。对于左侧曲线,系统的无寄生动态范围 (SFDR)仅为 77 dBc。通过稍微改变输入频率,谐波分量消失,我们得到一个草地般的本底噪声。

请注意,两种情况下量化误差的 RMS 值相同,导致 SNR 为 74 dBc(12 位 ADC 可获得的理论值)。对于这两种情况,RMS 误差都与量化噪声模型预测的值一致(大号小号乙12);然而,误差的频谱在左图中并不平坦。

上述谐波分量是量化过程的产物,与 ADC 电路的性能无关。这突出了有关 ADC 测试的一个重要警告:如果输入信号是采样频率的精确约数,我们为单音正弦波快速傅里叶变换 (FFT)测试获得的频谱将受到量化过程伪影的影响。

总而言之,如果量化误差与输入相关,我们不能假设 ADC 只会增加输入的本底噪声。在这种情况下,量化噪声模型不再有效,量化过程会在输出频谱中产生显着的谐波分量。通常,我们更希望误差能量散布在较宽的频带上,而不是集中在某些特定频率上。

量化低幅度信号

量化低幅度信号也会导致量化误差与输入之间的相关性。低幅度信号可能成为问题的一个示例应用是数字音频系统。假设 ADC 输入的幅度下降到 0.75 LSB,如图 4 所示。

651752b6-7534-11ed-8abf-dac502259ad0.jpg

图 4.显示 ADC 输入下降幅度的示例图。

如您所见,量化信号仅采用三个不同的值,并且具有类似方波的形状。我们知道方波的频谱包含基频的不同谐波。在上面的例子中,输入是 1.11 kHz 的正弦波,采样频率是 400 kHz(特意选择远高于奈奎斯特采样定理所要求的频率)。输出的 FFT 如图 5 所示。

6537c096-7534-11ed-8abf-dac502259ad0.jpg

图 5.显示 FFT 振幅与频率的关系图。

尽管输入频率 (1.11 kHz) 不是采样频率 (400 kHz) 的约数,但频谱包含大量谐波分量。这些谐波在图 6 提供的放大版频谱中更容易辨别。

65529d30-7534-11ed-8abf-dac502259ad0.jpg

图 6.频谱的放大版本。

抖动的优点

为了检查抖动技术,我们将具有三角形分布的噪声添加到上述信号中,然后对其进行量化。三角抖动 pdf(概率密度函数)的宽度取为 2 LSB。波形如图 7 所示。

657652ac-7534-11ed-8abf-dac502259ad0.jpg

图 7.添加具有三角分布的噪声并进行量化后的示例波形。

在时域,好像信息丢失了,但是频域呢?新量化信号的频谱(上图红色曲线)如图 8 所示。

659369dc-7534-11ed-8abf-dac502259ad0.jpg

图 8.新量化信号的频谱。

抖动消除了谐波分量。事实上,谐波分量的能量分布在很宽的频带上。因此,当我们应用抖动技术时,我们预计本底噪声会略有上升。除了这种影响之外,添加到输入端的抖动噪声也会导致本底噪声增加。

上面的例子清楚地显示了抖动在频谱分析应用中的优势。然而,有趣的是,即使不将信号转换到频域,我们也可以从抖动中获益。例如,在数字音频中,无特征背景噪声的增加(由于抖动)在感知上比量化器引入的人工谐波更容易接受。

从抖动噪声中获益

量化噪声模型的一个含义是量化误差与输入不相关。如果不是这种情况,则量化操作会引入一种失真,有时称为“量化失真”。通过添加抖动噪声,消除了量化误差与输入之间的相关性。这因此消除了由量化操作产生的谐波分量。这样,抖动可以提高理想量化器的性能。如上所述,抖动还用于其他几个目的。在本系列的下一篇文章中,我们将进一步深入讨论。

最后一点,值得一提的是,在大多数系统中,输入信号具有足够的噪声,因此不需要添加额外的抖动噪声来打破量化噪声与输入之间的相关性。此外,ADC 的输入参考噪声可能足以产生相同的抖动效果。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • adc
    adc
    +关注

    关注

    95

    文章

    5652

    浏览量

    539491
  • 模数转换
    +关注

    关注

    1

    文章

    205

    浏览量

    36094
  • 检测信号
    +关注

    关注

    0

    文章

    5

    浏览量

    6266

原文标题:什么是抖动?使用抖动消除量化失真

文章出处:【微信号:moorexuetang,微信公众号:摩尔学堂】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    了解并尽量减少抖动对高速链路的影响

    ,通常低于 100 飞秒 (fs),以保持系统性能。这些时钟还必须长期保持低抖动规格,且不受温度和电压的影响。 某些抖动是由信号路径噪声和失真引起的,使用重复时钟和重定时技术可以在一定程度上减少
    的头像 发表于 02-13 17:47 669次阅读
    了解并尽量减少<b class='flag-5'>抖动</b>对高速链路的影响

    相位抖动是从哪来的?通信中有哪些抖动

    相位抖动是从哪来的?通信中有哪些抖动? 相位抖动是指信号在传输过程中产生的相位变化,导致信号的相位偏离理想值的现象。它是由多种因素引起的,包括时钟不准确、传输介质不稳定、信号传输路径不确定等。 时钟
    的头像 发表于 01-25 15:29 365次阅读

    晶振中的抖动有哪两种主要类型?

    晶振中的抖动有哪两种主要类型? 晶振中的抖动主要分为相位抖动和频率抖动。 相位抖动是指晶振输出信号相位的随机波动。这种波动可能是由于晶体本身
    的头像 发表于 01-25 13:51 235次阅读

    示波器测量之抖动的四个维度

    示波器测量之抖动的四个维度  抖动是指信号的随机波动或变动,通常用于描述信号的不稳定性或扰动。在示波器测量中,抖动是一个重要的指标,用于评估测量结果的准确性和稳定性。抖动可以从四个维度
    的头像 发表于 01-19 15:01 312次阅读

    如何在通信系统中使用抖动改进ADC的SFDR呢?

    在之前的文章中,我们讨论了如何使用抖动来通过打破量化误差和输入信号之间的统计相关性来提高理想量化器的性能。
    的头像 发表于 11-29 17:12 700次阅读
    如何在通信系统中使用<b class='flag-5'>抖动</b>改进ADC的SFDR呢?

    AD8369增压大于1010输出就会出现抖动失真,会是什么原因造成的?

    帮忙解答下,AD8369增压大于1010输出就会出现抖动失真,会是什么原因造成的?
    发表于 11-22 07:02

    rs触发器消除按键抖动的原因

    按键抖动是指由于按键接点的不完美接触而导致的按键信号在短时间内多次跳变的现象。在电子设备的设计与制造中,消除按键抖动是非常重要的一个问题。为了解决这个问题,工程师们引入了RS触发器。 第一部分:按键
    的头像 发表于 11-17 15:53 879次阅读

    IC设计必须关注的时钟抖动

    时钟抖动是相对于理想时钟沿实际时钟存在不随时间积累的、时而超前、时而滞后的偏移称为时钟抖动,简称抖动
    的头像 发表于 11-08 15:08 1040次阅读
    IC设计必须关注的时钟<b class='flag-5'>抖动</b>

    电机抖动大怎么解决

    电机抖动大怎么解决 电机抖动大是指在电机运转时发生了震动或抖动现象,它主要是由于电机失衡、机械系统不稳定、设计误差或部件故障等因素造成的。如果不及时解决,电机抖动大不仅会降低设备的工作
    的头像 发表于 08-28 18:24 3333次阅读

    在通信系统中使用抖动改进ADC的SFDR

    通过使用抖动打破量化误差和输入信号之间的统计相关性可以提高理想量化器的性能。
    的头像 发表于 07-07 09:45 354次阅读
    在通信系统中使用<b class='flag-5'>抖动</b>改进ADC的SFDR

    通信系统中抖动简介

    抖动简介介绍了各种抖动类型的定义,包括随机抖动类型:高斯、周期间、相邻周期;和确定性抖动类型:占空比失真、脉冲宽度
    的头像 发表于 06-10 14:44 2322次阅读
    通信系统中<b class='flag-5'>抖动</b>简介

    相位抖动是从哪来的?通信中有哪些抖动

    发射端涉及到抖动的来源有:Thermal Noise(随机抖动), Duty Cycle Distortion(占空比失真), Power Supply Noise(随机抖动和周期性
    的头像 发表于 05-31 16:43 1060次阅读
    相位<b class='flag-5'>抖动</b>是从哪来的?通信中有哪些<b class='flag-5'>抖动</b>?

    在通信系统中使用抖动改进ADC的SFDR

    通过使用抖动打破量化误差和输入信号之间的统计相关性可以提高理想量化器的性能。
    的头像 发表于 05-24 09:37 428次阅读
    在通信系统中使用<b class='flag-5'>抖动</b>改进ADC的SFDR

    请问sr锁存器是如何消除脉冲抖动的?

    数电分析,电平从高到低再到高的过程,sr锁存器是如何消除脉冲抖动的?
    发表于 05-10 15:03

    通过减法和非减法抖动减少量化失真

    了解抖动如何抑制谐波和非谐波杂散以及两种不同类型的抖动系统:减法和非减法拓扑。 量化小幅度信号会在量化误差和输入之间产生相关性,从而导致明显的谐波分量。高频谐波可以混叠回奈奎斯特间隔,
    的头像 发表于 05-03 11:14 1041次阅读
    通过减法和非减法<b class='flag-5'>抖动</b>减少<b class='flag-5'>量化</b><b class='flag-5'>失真</b>