0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一种多功能粘结剂可用于全面改善硅负极的性能

锂电联盟会长 来源:能源学人 作者:能源学人 2022-11-28 09:36 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

【研究背景】

因为高比容量、低工作电压和丰富储量,硅被认为是目前最有前途的动力电池负极材料之一。然而,因为储锂脱锂过程中巨大的体积变化,导致电极结构破坏和界面SEI持续生长等一系列问题,致使电极容量迅速衰减,成为硅负极在实际应用开发中的瓶颈难题。研究人员认为硅负极的开发是一项系统工程,除了电极材料复合与结构设计外,只有配以合适的粘结剂和电解质,才能充分发挥硅负极的优势,实现整体性能的大幅提升。虽然粘结剂在电极中比重较低,但对于硅负极这类面临严重体积效应的体系,它能起到结构稳定作用并对电极的循环性能产生显著影响。

【工作介绍】

近日,西安交通大学苏州研究院金宏、徐慧课题组提出了一种具有能量耗散功能和界面稳定效应的多功能粘结剂GCA13。与传统线型或交联网络型粘结剂不同,本工作在含有丰富羟基的瓜尔胶长链中引入大量柠檬酸小分子,并利用游离态小分子的增塑作用,构筑了一种具有黏弹性的粘结剂网络。该黏弹网络可实现充放电过程中硅颗粒的自重排与裂纹自愈合,有效释放了硅体积效应导致的应力集中,保持了电极结构的一体化与循环稳定性。此外,该粘结剂通过对硅颗粒的预制包覆,诱导产生了具有能量耗散效应的双层结构SEI。该SEI帮助电极在长循环过程中实现界面稳定,从而维持优异的电化学性能。因此,Si@GCA13电极在740次循环后,保持1184 mAh g-1高可逆容量(2 A g-1电流密度),后期平均库伦效率达到99.9%。受益于该粘结剂的特殊优越性,该电极在低温(-15℃和0℃)和高温(60℃)下显示出良好的循环稳定性。该工作验证了多功能粘结剂的设计策略在实现硅负极全面性能提升上的巨大的潜力,并拓展了其在高低温严酷条件下的应用开发。该文章以An Energy Dissipative Binder for Self-Tuning Silicon Anodes in Lithium-Ion Batteries为题,发表在Advanced Science上。中科大硕士生童乙红为本文第一作者,金宏正高级工程师和徐慧副研究员为本文通讯作者。

【内容表述】

c5ed62bc-6eb1-11ed-8abf-dac502259ad0.png

Scheme 1. GCA13多功能粘结剂的工作机理。

本文通过结合瓜尔胶(GG)链作为骨架和柠檬酸(CA)小分子作为接枝,协同设计长程效应(构筑强韧骨架,实现锂离子快速传输)和短程效应(局部灵活取向,实现能量耗散),以构建一个坚固的网络,如Scheme 1所示。一方面,GCA13的黏弹性使电极具有结构上的自我调整能力,在循环过程中遭遇巨大体积变化时,通过硅颗粒的重排来释放应力和缓解电极的膨胀。黏弹网络与丰富的可逆氢键协同作用下,电极可实现强的裂纹自我修复能力。此外,粘结剂在硅表面形成了一层预制包覆层,可诱导产生富含LiF的双层SEI抑制电解液的持续分解,有助于保持界面的稳定性。

c618d7ee-6eb1-11ed-8abf-dac502259ad0.png

图1. (a) GCA13、GG和CA的FTIR光谱。(b) 使用不同粘结剂的硅电极对铜箔粘附力。(c) GCA13和GG聚合物薄膜的应力-应变曲线。(d) GCA13溶液(1wt%)的随频率变化的粘弹性模量测试。(e) 1wt%的GCA13、CA和GG溶液与SiNPs的接触角。(f) 电解液与GCA13、CA和GG粘结剂制备的Si电极表面接触角。

通过FTIR和XPS测试证实了GCA13粘结剂黏弹网络的成功构筑,如图1所示。相关电极及粘结剂的机械性能测试如图1所示。流变模量曲线显示GCA13粘结剂表现为黏弹性。接触角结果则显示,GG与CA的相互作用提高了粘结剂与硅颗粒以及电解液与硅电极之间的润湿性。此外,在光学显微镜下观察了电极表面预制划痕的形态演变,如图2所示,经过10个循环后,图2b和d中划痕出现明显的愈合。Si@GCA13电极这种显著自愈合现象主要归因于循环过程中硅颗粒的重新排列和自调整,这个机理也被电极表面随着循环圈数逐渐减小的粗糙度Ra证实(图2. i-q)。

c62255da-6eb1-11ed-8abf-dac502259ad0.png

图2. (a) 电极结构自调节的示意图。Si@GCA13电极上划痕OM图像,(b,d)新鲜的,(c,e)10次循环后的(图中的明亮部分是暴露的铜箔)。Si@GCA13电极表面SEM图像,(f)新鲜的,(h)1次循环后,(j)2次循环后。Si@GCA13电极截面SEM图像和厚度,(g)新鲜的,(i)1次循环后,(k)2次循环后。Si@GCA13电极的表面AFM图像,(l,o)新鲜的,(m)30圈循环后,(p)760圈循环后。(n, q) Si@GCA13电极在不同循环圈数后的表面平均粗糙度(Ra)。

通过SEM和XPS进一步验证了GCA13粘结剂对硅负极结构稳定性的提升作用。如图3. e和f所示,经过500圈循环后,Si@GCA13电极只有较少的微裂纹,厚度变化仅为184%,验证了GCA13粘结剂对硅负极显著的结构稳定作用。此外,XPS对不同循环圈数后的电极SEI成分表征显示硅表面的预制包覆可以帮助诱导形成稳定的SEI,进一步提升电极的长循环性能。

c655f750-6eb1-11ed-8abf-dac502259ad0.png

图3. Si@GCA13电极的截面SEM图像和厚度,(a)新鲜的,(b)100次循环后。Si@GG电极的截面SEM图像和厚度,(c)新鲜的,(d)100次循环后。500次循环后的Si@GCA13电极表面(e)和截面SEM图像(f)。

利用Ar+刻蚀XPS对循环后的SEI进行梯度成分解析,图4a-f结果显示,Si@GCA13电极的SEI大致呈现出两层结构。内层主要由LiF和Li2CO3等无机成分组成。其中LiF是一种适用于SEI的成分,而Li2CO3可以帮助诱导SEI形成连续和平滑的结构。SEI较薄的外层主要以ROCO2Li等有机成分为主,可提高SEI的弹性和延展性。通过AFM QNM对SEI的力学性能进行了研究(图4g-i),Si@GCA13电极的SEI对探针尖有更大的粘附力和更高的能量耗散,显示其具有较好的延展性来对抗硅体积膨胀带来的力学冲击。因此,该粘结剂诱导的这种稳定的双层SEI在机械上和电化学上都有利于维持电极的界面稳定。

c6719596-6eb1-11ed-8abf-dac502259ad0.png

图4. 30次循环后,不同Ar+刻蚀时间下Si@GCA13(a-c)和Si@GG(d-f)的O 1s、F 1s和Si 2p的强度等高线图。30次循环后,Si@GCA13(g)和Si@GG(j)电极的DMT Modulus图。30次循环后,Si@GCA13(h)和Si@GG(k)电极的粘附力图。30个循环后Si@GCA13(i)和Si@GG(l)电极的能量耗散图。

图5中,硅负极电化学循环结果表明,Si@GCA13电极在首效、长循环稳定性、高面容量和全电池方面都展现出了优异的性能。在常温下740次循环后还有1184 mAh g-1的高可逆容量。此外,在-15℃循环200圈还有1025 mAh g-1的高比容量。由此可见Si@GCA13电极在宽温度范围内(-15-60℃)展现了优异的电化学表现。

c689e498-6eb1-11ed-8abf-dac502259ad0.png

图5. (a)不同粘结剂制备的硅电极的初始库仑效率和充放电容量-电压曲线。(b) Si@GCA13和Si@PAA电极在低温下(0℃和-15℃)的循环性能。(c) 电流密度为2 A g-1时Si@GCA13电极的长循环稳定性。(d) 不同面容量的Si@GCA13电极循环性能。(e) Si@GCA13/NCM523全电池在0.1C下的循环性能。

【结论】

综上所述,本文设计了一种多功能粘结剂(GCA13),该粘结剂是基于坚固的长程(来自GG骨架)和灵活的短程(由CA小分子引入)效应的协同策略,用于全面改善硅负极的性能。不同于传统的聚合物粘结剂,利用大量游离态小分子的塑化作用,这种黏弹性粘结剂可通过硅颗粒的重排使电极具有显著的自调节和自修复能力。因此,Si@GCA13电极可以在循环过程中保持一体完整的稳定结构。此外,通过在Si表面预制含CA包覆层,该粘结剂可诱导形成双层SEI,以构建电化学稳定且具有能量耗散特性的界面。因此,Si@GCA13电极在长循环、全电池循环和高面容量方面表现出了出色的电化学性能。特别是该粘结剂的独特优越性确保了硅负极在宽温范围这一严苛条件下(-15℃到60℃)使用的能力。这项工作表明,优化的粘结剂设计策略可以从全方位提升硅负极的综合性能。预计这种结构自调节策略和绿色制造方法可以为开发具有优良安全性和长寿命的高能量密度电池作出贡献。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 动力电池
    +关注

    关注

    113

    文章

    4664

    浏览量

    81051
  • 电解质
    +关注

    关注

    6

    文章

    827

    浏览量

    21236
  • 电池
    +关注

    关注

    85

    文章

    11357

    浏览量

    141302

原文标题:​硅负极粘结剂新策略:黏弹网络实现电极结构自调节与界面稳定

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    锂电池中黏结的作用和分类:全面解析锂电池粘结剂技术

    仅占电池重量不足5%的粘结剂(Binders),却是维持电极结构完整性、保障电池循环寿命的关键“隐形功臣”。本文深度剖析了粘结剂在多体系电池中的演变与设计策略。从
    的头像 发表于 12-04 18:02 337次阅读
    锂电池中黏结<b class='flag-5'>剂</b>的作用和分类:<b class='flag-5'>全面</b>解析锂电池<b class='flag-5'>粘结剂</b>技术

    纳米碳复合负极:锂电池高容量升级的核心材料

    ,既继承了4200mAh/g的超高理论比容量优势,又借助碳材料的调控作用缓解了基材料的固有缺陷,其研发与应用进度直接关系到动力电池性能升级的节奏。   基材料之所以成为下
    的头像 发表于 11-19 09:11 1997次阅读

    锂电池黏结机理:新型粘结剂实现更强电极完整性

    极至关重要,但这会加剧机械和界面应力,影响循环稳定性。本文介绍一种既能牢牢粘接活性物质,又能弹性缓冲机械应力,还可促进锂离子传输的新型聚合物刷网络粘结剂为高能量密度
    的头像 发表于 11-11 18:03 2085次阅读
    锂电池黏结<b class='flag-5'>剂</b>机理:新型<b class='flag-5'>粘结剂</b>实现更强电极完整性

    负极电池供电新选择--帝奥微DIO6156 低UVLO(欠压锁定)+全维度高性能同步降压DCDC

    当今时代,人们使用智能手机的频率越来越高,续航能力已经成为消费者购买智能手机需要考虑的重要指标之。随着产业链的全面协同及技术突破,能量密度更高的负极电池带来了大容量电池的爆发,为手
    的头像 发表于 10-20 09:46 5.2w次阅读
    <b class='flag-5'>硅</b><b class='flag-5'>负极</b>电池供电新选择--帝奥微DIO6156 低UVLO(欠压锁定)+全维度高<b class='flag-5'>性能</b>同步降压DCDC

    善思创兴薄膜力学断层扫描测试仪:聚焦锂电池材料检测,解决行业核心测试痛点

    10-50μm 区间时,传统纳米压痕测试会因 “基底效应”(基材硬度干扰涂层测试结果)导致剪切强度数据偏差超 15%,无法精准反映涂层真实力学性能,而粘结剂分布不均正是极片循环寿命衰减的主要原因之
    发表于 08-30 14:16

    降本减碳双压之下,清研电子TYB-005干法粘结剂如何改写电池未来

    全球动力电池产业年增速达35%,电池制造创新成为行业焦点,近几年干法电极技术发展较快。粘结剂作为干法电极制造的关键材料,直接影响电池的能量密度、循环寿命和生产成本。传统湿法工艺虽占主导,但依赖
    的头像 发表于 08-25 16:17 498次阅读
    降本减碳双压之下,清研电子TYB-005干法<b class='flag-5'>粘结剂</b>如何改写电池未来

    干法 vs 湿法工艺:全固态锂电池复合正极中粘结剂分布与电荷传输机制

    研究背景全固态锂电池因其高能量密度和安全性成为电动汽车电池的有力候选者。然而,聚合物粘结剂作为离子绝缘体,可能对复合正极中的电荷传输产生不利影响,从而影响电池的倍率性能。本研究旨在探讨干法和湿法两
    的头像 发表于 08-11 14:54 1179次阅读
    干法 vs 湿法工艺:全固态锂电池复合正极中<b class='flag-5'>粘结剂</b>分布与电荷传输机制

    eVTOL低空飞行器电机为什么要用自粘结铁芯方案?

    具有不可替代性: 减少机械固定件的结构减重 传统铁芯依赖铆钉、焊接或扣片固定叠片,这些机械结构会增加铁芯重量,且会占用内部空间(导致叠片有效面积减少)。自粘结铁芯通过高分子粘结剂实现叠片体化,完全
    发表于 08-06 11:25

    锂离子电池极片辊压工艺原理与厚度控制

    在锂离子电池的生产过程中,辊压工艺是确保极片性能和电池质量的关键环节。通过将电池正负极材料与活性物质、导电粘结剂等混合物进行辊压,使其形成致密的结构,从而实现降低涂层厚度、增加压实
    的头像 发表于 08-05 17:50 1650次阅读
    锂离子电池极片辊压工艺原理与厚度控制

    粘结电机铁芯跟传统铆接焊接电机铁芯对比,有何优势?

    粘结铁芯技术介绍:自粘结铁芯是一种新型电机铁芯技术,通过在硅钢片表面涂覆特殊胶粘剂,该胶粘层方面具有普通硅钢的表面绝缘作用,另方面,在
    发表于 07-10 16:02

    切割液润湿用哪种类型?

    18144379175 如何选择适合的晶切割液用润湿 兼容性 :要与晶切割液的主要成分,如聚乙二醇等高分子聚合物充分相容,不产生分层、沉淀等现象,保证切割液体系稳定。 切割性能
    发表于 02-07 10:06

    负极接二极管的负极是什么作用

    在电子电路中,二极管作为一种基础的半导体器件,以其独特的单向导电性在整流、开关、稳压、信号调制等多种功能中发挥着关键作用。其中,负极接二极管,又称稳压二极管,是一种特殊的二极管类型,其
    的头像 发表于 01-30 15:45 2.7w次阅读

    一种3D交联导电粘结剂用于负极Angew

    (Si)负极在高容量锂离子电池(LIBs)中具有巨大潜力,但其实际应用受到严重体积膨胀和机械退化的阻碍。为了解决这些挑战,我们提出了一种创新的3D交联导电聚噁二唑(POD)粘结剂,通
    的头像 发表于 01-20 13:56 1205次阅读
    <b class='flag-5'>一种</b>3D交联导电<b class='flag-5'>粘结剂</b><b class='flag-5'>用于</b><b class='flag-5'>硅</b><b class='flag-5'>负极</b>Angew

    安泰功率放大器在钢筋与水泥基材料粘结性能研究中的应用

    的基本前提.传统检测粘结性能的拉拔试验会对构件造成定损伤,有时甚至无法进行试验.超声波无损检测(NDT)为检测粘结性能带来了方便,目前,对于数字化超声波检测粘结性能的研究已取得了
    的头像 发表于 01-17 11:02 580次阅读
    安泰功率放大器在钢筋与水泥基材料<b class='flag-5'>粘结性能</b>研究中的应用

    微量多功能添加显著提升4.8V富镍正极和负极电池的超高压性能

     LiNi0.8Co0.1Mn0.1O2, NCM811) 与高容量负极相结合,被认为是高能量密度锂离子电池 (LIBs) 的理想候选者之。然而,在高镍含量、高电压和极端温度等苛刻条件工作时,富镍正极将发生严重的界面和结构
    的头像 发表于 12-23 09:26 2129次阅读
    微量<b class='flag-5'>多功能</b>添加<b class='flag-5'>剂</b>显著提升4.8V富镍正极和<b class='flag-5'>硅</b>氧<b class='flag-5'>负极</b>电池的超高压<b class='flag-5'>性能</b>