0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Python数据可视化:类别比较图表可视化

jf_Vqngj70R 来源:美男子玩编程 作者:美男子玩编程 2022-11-15 15:09 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

在学习本篇博文之前请先看一看之前发过的关联知识:

Python数据可视化:如何选择合适的图表可视化?

根据表达数据的侧重内容点,将图表类型分为6大类:类别比较图表、数据关系图表、数据分布图表、时间序列图表、局部整体图表和地理空间图表(有些图表也可以归类于两种或多种图表类型)。

本篇将介绍类别比较图表的可视化方法。

类别比较型图表的数据一般分为:数值型和类别型两种数据类型,主要包括:柱形图、条形图、雷达图、词云图等,通常用来比较数据的规模。如下所示:

e016fbd8-649a-11ed-8abf-dac502259ad0.png

1

柱状图

柱形图是一种以长方形的长度为变量的统计图表。柱形图用于显示一段时间内的数据变化或显示各项之间的比较情况。

在柱形图中,类别型或序数型变量映射到横轴的位置,数值型变量映射到矩形的高度。控制柱形图的两个重要参数是:“系列重叠"和“分类间距”。

  • “分类间距"控制同一数据系列的柱形宽度;

  • “系列重叠"控制不同数据系列之间的距离。

下图为常见的柱形图类型:单数据系列柱形图、多数据系列柱形图、堆积柱形图和百分比堆积柱形图。

e05c82a2-649a-11ed-8abf-dac502259ad0.png

1.1、单数据系列柱形图

通过一个示例了解单数据系列柱形图的使用,实现代码如下所示:

mydata = pd.DataFrame({'Cut': ["Fair", "Good", "Very Good", "Premium", "Ideal"],
                       'Price': [4300, 3800, 3950, 4700, 3500]})


Sort_data = mydata.sort_values(by='Price', ascending=False)


fig = plt.figure(figsize=(6, 7), dpi=70)
plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)
plt.grid(axis="y", c=(217/256, 217/256, 217/256))  # 设置网格线
# 将网格线置于底层
ax = plt.gca()  # 获取边框
ax.spines['top'].set_color('none')  # 设置上‘脊梁’为红色
ax.spines['right'].set_color('none')  # 设置上‘脊梁’为无色
ax.spines['left'].set_color('none')  # 设置上‘脊梁’为无色


plt.bar(Sort_data['Cut'], Sort_data['Price'],
        width=0.6, align="center", label="Cut")


plt.ylim(0, 6000)  # 设定x轴范围
plt.xlabel('Cut')
plt.ylabel('Price')
plt.show()

	

效果如下所示:

e081bb26-649a-11ed-8abf-dac502259ad0.png

1.2、多数据系列柱形图

通过一个示例了解多数据系列柱形图的使用,实现代码如下所示:


	
x_label = np.array(df["Catergory"])
x = np.arange(len(x_label))
y1 = np.array(df["1996"])
y2 = np.array(df["1997"])


fig = plt.figure(figsize=(5, 5))
plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)  # 设置绘图区域大小位置


plt.bar(x, y1, width=0.3, color='#00AFBB', label='1996', edgecolor='k',
        linewidth=0.25)  # 调整y1轴位置,颜色,label为图例名称,与下方legend结合使用
plt.bar(x+0.3, y2, width=0.3, color='#FC4E07', label='1997',
        edgecolor='k', linewidth=0.25)  # 调整y2轴位置,颜色,label为图例名称,与下方legend结合使用
plt.xticks(x+0.15, x_label, size=12)  # 设置x轴刻度,位置,大小


# 显示图例,loc图例显示位置(可以用坐标方法显示),ncol图例显示几列,默认为1列,frameon设置图形边框
plt.legend(loc=(1, 0.5), ncol=1, frameon=False)


plt.yticks(size=12)  # 设置y轴刻度,位置,大小
plt.grid(axis="y", c=(217/256, 217/256, 217/256))  # 设置网格线
# 将y轴网格线置于底层
# plt.xlabel("Quarter",labelpad=10,size=18,)                          #设置x轴标签,labelpad设置标签距离x轴的位置
# plt.ylabel("Amount",labelpad=10,size=18,)                                   #设置y轴标签,labelpad设置标签距离y轴的位置




ax = plt.gca()  
ax.spines['top'].set_color('none')  # 设置上‘脊梁’为无色
ax.spines['right'].set_color('none')  # 设置右‘脊梁’为无色
ax.spines['left'].set_color('none')  # 设置左‘脊梁’为无色


plt.show()

	

效果如下所示:

e09a4de4-649a-11ed-8abf-dac502259ad0.png

1.3、堆积柱形图

通过一个示例了解堆积柱形图的使用,实现代码如下所示:


		
# -*- coding: utf-8 -*-
# %%
import pandas as pd
import numpy as np
from plotnine import *




mydata = pd.DataFrame(dict(Name=['A', 'B', 'C', 'D', 'E'],
                           Scale=[35, 30, 20, 10, 5],
                           ARPU=[56, 37, 63, 57, 59]))


# 构造矩形X轴的起点(最小点)
mydata['xmin'] = 0
for i in range(1, 5):
    mydata['xmin'][i] = np.sum(mydata['Scale'][0:i])


# 构造矩形X轴的终点(最大点)
mydata['xmax'] = 0
for i in range(0, 5):
    mydata['xmax'][i] = np.sum(mydata['Scale'][0:i+1])


mydata['label'] = 0
for i in range(0, 5):
    mydata['label'][i] = np.sum(mydata['Scale'][0:i+1])-mydata['Scale'][i]/2


base_plot = (ggplot(mydata) +
             geom_rect(aes(xmin='xmin', xmax='xmax', ymin=0, ymax='ARPU', fill='Name'), colour="black", size=0.25) +
             geom_text(aes(x='label', y='ARPU+3', label='ARPU'), size=14, color="black") +
             geom_text(aes(x='label', y=-4, label='Name'), size=14, color="black") +
             scale_fill_hue(s=0.90, l=0.65, h=0.0417, color_space='husl') +
             ylab("ARPU") +
             xlab("scale") +
             ylim(-5, 80) +
             theme(  # panel_background=element_rect(fill="white"),
    #panel_grid_major = element_line(colour = "grey",size=.25,linetype ="dotted" ),
    #panel_grid_minor = element_line(colour = "grey",size=.25,linetype ="dotted" ),
    text=element_text(size=15),
    legend_position="none",
    aspect_ratio=1.15,
    figure_size=(5, 5),
    dpi=100
))
print(base_plot)

2

条形图

条形图与柱形图类似,几乎可以表达相同多的数据信息。

在条形图中,类别型或序数型变量映射到纵轴的位置,数值型变量映射到矩形的宽度。条形图的柱形变为横向,从而导致与柱形图相比,条形图更加强调项目之间的大小对比。尤其在项目名称较长以及数量较多时,采用条形图可视化数据会更加美观、清晰,如下图所示:

e139e822-649a-11ed-8abf-dac502259ad0.png

2.1、单数据系列条形图

通过一个示例了解单数据系列条形图的使用,实现代码如下所示:


		
df = pd.read_csv('Stackedbar_Data.csv')


df = df.sort_values(by='Pensions', ascending=True)


df['Country'] = pd.Categorical(df['Country'], categories=df['Country'], ordered=True)
df


# %%
base_plot = (ggplot(df, aes('Country', 'Pensions')) +
             # "#00AFBB"
             geom_bar(stat="identity", color="black", width=0.6, fill="#FC4E07", size=0.25) +

实现效果如下所示:

e1547b56-649a-11ed-8abf-dac502259ad0.png

2.2、多数据系列条形图

通过一个示例了解多数据系列条形图的使用,实现代码如下所示:


			
df = pd.read_csv('Stackedbar_Data.csv')

效果如下所示:

e17e22da-649a-11ed-8abf-dac502259ad0.png

2.3、堆积条形图

通过一个示例了解堆积条形图的使用,实现代码如下所示:

df = pd.read_csv('Stackedbar_Data.csv')
Sum_df = df.iloc[nonedisplay: none;'>

e1986816-649a-11ed-8abf-dac502259ad0.png

2.4、百分比堆积条形图

通过一个示例了解百分比堆积条形图的使用,实现代码如下所示:

df = pd.read_csv('Stackedbar_Data.csv')

							

效果如下所示:

e1faa5bc-649a-11ed-8abf-dac502259ad0.png

4

词云图

词云图通过使每个字的大小与其出现频率成正比,显示不同单词在给定文本中的出现频率,这会过滤掉大量的文本信息,使浏览者只要一眼扫过文本就可以领略文本的主旨。

词云图会将所有的字词排在一起,形成云状图案,也可以任何格式排列:水平线、垂直列或其他形状,也可用于显示获分配元数据的单词。如下图所示:

e33cfb5a-649a-11ed-8abf-dac502259ad0.png每个圆圈表示一个数值刻度,而径向分隔线(从中心延伸出来的线)则用于区分不同类别或间隔(如果是直方图)。刻度上较低的数值通常由中心点开始,然后数值会随着每个圆形往外增加,但也可以把任何外圆设为零值,这样里面的内圆就可用来显示负值。条形通常从中心点开始向外延伸,但也可以以别处为起点,显示数值范围(如跨度图)。

此外,条形也可以如堆叠式条形图般堆叠起来,如下图所示:

e3d8bd60-649a-11ed-8abf-dac502259ad0.png

8

热力图

热力图是一种通过对色块着色来显示数据的统计图表,绘图时需指定颜色映射的规则。例如,较大的值由较深的颜色表示,较小的值由较浅的颜色表示;较大的值由偏暖的颜色表示,较小的值由较冷的颜色表示等。

通过一个示例了解热力图的使用,实现代码如下所示:

import numpy as np
import pandas as pd
from plotnine import *
from plotnine.data import mtcars


mat_corr = np.round(mtcars.corr(), 1).reset_index()
mydata = pd.melt(mat_corr, id_vars='index', var_name='var', value_name='value')
mydata


# %%
base_plot = (ggplot(mydata, aes(x='index', y='var', fill='value', label='value')) +
             geom_tile(colour="black") +
             geom_text(size=8, colour="white") +
             scale_fill_cmap(name='RdYlBu_r') +
             coord_equal() +
             theme(dpi=100, figure_size=(4, 4)))
print(base_plot)


# %%
mydata['AbsValue'] = np.abs(mydata.value)


base_plot = (ggplot(mydata, aes(x='index', y='var', fill='value', size='AbsValue')) +
             geom_point(shape='o', colour="black") +
             # geom_text(size=8,colour="white")+
             scale_size_area(max_size=11, guide=False) +
             scale_fill_cmap(name='RdYlBu_r') +
             coord_equal() +
             theme(dpi=100, figure_size=(4, 4)))
print(base_plot)


# %%
base_plot = (ggplot(mydata, aes(x='index', y='var', fill='value', size='AbsValue')) +
             geom_point(shape='s', colour="black") +
             # geom_text(size=8,colour="white")+
             scale_size_area(max_size=10, guide=False) +
             scale_fill_cmap(name='RdYlBu_r') +
             coord_equal() +
             theme(dpi=100, figure_size=(4, 4)))
print(base_plot)

							

效果如下所示:

e3f754d2-649a-11ed-8abf-dac502259ad0.png

e41ddce2-649a-11ed-8abf-dac502259ad0.png

e4472886-649a-11ed-8abf-dac502259ad0.png


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 可视化
    +关注

    关注

    1

    文章

    1318

    浏览量

    22602
  • 图表
    +关注

    关注

    0

    文章

    33

    浏览量

    9159
  • python
    +关注

    关注

    57

    文章

    4858

    浏览量

    89598

原文标题:Python数据可视化:类别比较图表可视化

文章出处:【微信号:美男子玩编程,微信公众号:美男子玩编程】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    光伏电站可视化的实现

    实现光伏电站可视化,核心是在于通过直观的视觉界面,解决传统运维中低效巡检、数据孤岛、被动响应等痛点,从而提升运营效率并提供决策支持。这是一种有效的技术手段,通过数字孪生、三维建模、数据
    的头像 发表于 10-21 17:29 869次阅读
    光伏电站<b class='flag-5'>可视化</b>的实现

    如何使用协议分析仪进行数据分析与可视化

    使用协议分析仪进行数据分析与可视化,需结合数据捕获、协议解码、统计分析及可视化工具,将原始数据转化为可解读的
    发表于 07-16 14:16

    工业设备可视化管理系统是什么

    工业设备可视化管理系统是一种基于物联网(IoT)、大数据、云计算、数字孪生等技术,对工业设备的运行状态、性能参数、维护信息等进行实时监测、数据整合与可视化呈现的智能管理平台。它通过将复
    的头像 发表于 05-27 14:56 735次阅读
    工业设备<b class='flag-5'>可视化</b>管理系统是什么

    结构可视化:利用数据编辑器剖析数据内在架构​

    结构可视化聚焦于展示数据的内部结构和各部分之间的关系,使企业能够深入理解数据的组织方式和层次体系,从而更好地进行数据管理和分析。通过结构可视化
    的头像 发表于 05-07 18:42 413次阅读

    工业设备数据集中监控可视化管理平台是什么

    工业设备数据集中监控可视化管理平台是一种用于整合、监控和可视化工业设备数据的综合性系统,旨在帮助企业实现设备数据的集中管理、实时监控和
    的头像 发表于 05-06 11:10 837次阅读

    VirtualLab Fusion应用:3D系统可视化

    描述和F-Theta透镜的应用示例。 光学系统的3D-可视化 VirtualLab Fusion提供的工具可以实现光学系统的3D可视化,因此可以用于检查元件的位置,以及快速了解系统内部的光传播情况
    发表于 04-30 08:47

    可视化组态物联网平台是什么

    可视化含义:组态是一种用于构建复杂物联网系统的工具,它提供了丰富的图形组件和可视化元素,使得用户可以通过简单的拖拽操作来创建自定义的界面。可视化则强调将物联网系统产生的大量
    的头像 发表于 04-21 10:40 699次阅读

    可视化数据大屏:连线构建视觉新秩序 #数据可视化 #可视化大屏

    可视化
    阿梨是苹果
    发布于 :2025年03月18日 16:12:04

    VirtualLab Fusion中的可视化设置

    通过以下控件进行重置、加载和保存: 主窗口设置 字体配置 数字显示 文档窗口设置 1D数据数组可视化设置 颜色表 谐波场视图
    发表于 02-25 08:51

    VirtualLab Fusion应用:光波导k域布局可视化(“神奇的圆环”)

    特定光波导布局的光导和耦合条件。 概念 方向转换器计算器 可以通过“开始”>“计算器”找到方向转换器计算器,这有助于演示指定角度的不同方式。 k域可视化 k域可视化:平面波的传播
    发表于 02-21 08:53

    七款经久不衰的数据可视化工具!

    量的激增,单纯通过数字和文本来分析数据已不再高效。数据可视化则提供了一种直观、互动性强的方式,帮助人们通过视觉元素,如柱状图、折线图、饼图、热力图等图表形式,理解复杂的
    发表于 01-19 15:24

    光学系统的3D可视化

    **摘要 ** 为了从根本上了解光学系统的特性,对其组件进行可视化并显示光的传播情况大有帮助。为此,VirtualLab Fusion 提供了显示光学系统三维可视化的工具。这些工具还可用于检查元件
    发表于 01-06 08:53

    “一键寻阀”拓扑数据可视化,管网分布监控 #拓扑 #数据可视化 #管网分布

    数据可视化
    阿梨是苹果
    发布于 :2024年12月31日 14:44:36

    什么是大屏数据可视化?特点有哪些?

    介绍: 特点 直观易懂:大屏数据可视化通过图表、图形和其他可视化元素,将复杂的数据转化为直观易懂的形式,使得用户无需深入挖掘
    的头像 发表于 12-16 16:59 1002次阅读

    如何找到适合的大屏数据可视化系统

    选择合适的大屏数据可视化系统是企业或组织在数字转型过程中至关重要的一步。一个优秀的大屏数据可视化系统能够实时呈现关键业务
    的头像 发表于 12-13 15:47 806次阅读