0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

什么是图神经网络 谁在使用图神经网络

NVIDIA英伟达 来源:海豚数据科学实验室 作者:海豚数据科学实验 2022-11-03 22:46 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

神经网络深度学习的预测能力应用于丰富的数据结构中,这些数据结构将物体及其对应关系描述为图中用线连成的点。

当两种技术相融合,就可以创造出一些新的和奇妙的事物,比如手机和浏览器融合成了智能手机

当今,开发者正在将 AI 发现规律的能力应用于大型图数据库,这些数据库存储着包含各数据点之间关系的信息。两者组合成被称为图神经网络(GNN)的强大新工具。

什么是图神经网络

图神经网络将深度学习的预测能力应用于丰富的数据结构中,这些数据结构将物体及其对应关系描述为图中用线连成的点。

在图神经网络中,被称为“节点”的数据点通过被称为“边”的线连接,各种元素均以数学形式表达,这使机器学习算法可以在节点、边或整个图的层面做出有用的预测。

图神经网络能做什么

越来越多的公司正在使用 GNN 改进药物研发、欺诈检测和推荐系统。这些以及更多其他应用都依赖于寻找数据点之间的关系规律。

研究人员正在探索 GNN 在计算机图形学、网络安全、基因组学和材料科学中的用例。近期的一篇论文描述了 GNN 如何利用图形式的交通地图改进对到达时间的预测。

许多科学和工业领域已在图数据库中储存了有价值的数据。通过深度学习,他们可以训练预测模型,从图中挖掘出新颖的洞察。

19b55d58-5b7c-11ed-a3b6-dac502259ad0.png

许多科学和工业领域的知识都可以用图来表达

亚马逊云科技(AWS)高级首席科学家 George Karypis 在今年早些时候的讲座中表示:“GNN 是深度学习研究中最热门的领域。越来越多的应用正在使用 GNN 来提高其性能。”

很多人都深表赞同。斯坦福大学副教授 Jure Leskovec 表示:“GNN 正在引得越来越多的关注,它们可以灵活地建立复杂关系的模型,而这是传统神经网络所做不到的。”他在演讲中展示了下面的这张 AI 论文图表,里面提到了 GNN。

19d79d00-5b7c-11ed-a3b6-dac502259ad0.png

谁在使用图神经网络?

亚马逊在 2017 年表示正在使用 GNN 来检测欺诈。2020 年,亚马逊推出了供外部用户用于欺诈检测、推荐系统等应用的公共 GNN 服务。

为了维持客户的高度信任,亚马逊搜索引擎采用 GNN 来检测恶意卖家、买家和产品。借助 NVIDIA GPU,该搜索引擎能够探索具有数千万个节点和数亿条边的图,并同时将训练时间从 24 小时缩短到 5 小时。

葛兰素史克 AI 全球负责人 Kim Branson 在 GNN 研讨会的某场小组讨论会上表示,生物制药公司葛兰素史克维护着拥有近 5000 亿个节点的知识图谱,该图谱被用于该公司的许多机器语言模型中。

LinkedIn 高级软件工程师 Jaewon Yang 在该研讨会的另一场座谈会上表示,LinkedIn 使用 GNN 提供社交推荐,并了解人的技能与其工作职位之间的关系

NVIDIA 杰出工程师 Joe Eaton 表示:“GNN 是通用工具,我们每年都会开发一些新的 GNN 应用。”目前 Joe Eaton 正在领导将加速计算应用于 GNN 的团队。他表示“我们甚至都还没有触及到 GNN 的表层功能。”

另一个迹象也表明了人们对 GNN 的兴趣——Leskovec 在斯坦福大学教授 GNN 的课程视频已突破 70 万次浏览量。

GNN 如何工作?

到目前为止,深度学习主要集中在图像和文本上。这两种结构化数据可以被描述为单词序列或像素网格。相比之下,图是非结构化的,因此可以是任何形状或尺寸,并包含图像、文本等任何类型的数据。

GNN 使用被称为信息传递的流程将图组织起来,以便机器学习算法的使用。

信息传递将关于邻近节点的信息嵌入到每个节点中。AI 模型利用嵌入的信息来寻找规律并进行预测。

19eec7e6-5b7c-11ed-a3b6-dac502259ad0.png

三类 GNN 中的数据流示例

例如,推荐系统使用将节点嵌入 GNN 的方式来匹配客户和产品;欺诈检测系统使用边缘嵌入来发现可疑交易;药物发现模型通过比较整个分子图来找出它们之间的反应。

GNN 还有两个独特之处:它们使用稀疏数学,而且模型通常只有两到三层。其他 AI 模型通常使用密集数学并且有数百个神经网络层。

1a01d192-5b7c-11ed-a3b6-dac502259ad0.png

GNN 流程在输入图后输出预测

GNN 的发展史

意大利研究人员在 2009 年发表的论文中首次将这种神经网络命名为“图神经网络”。但直到八年之后,阿姆斯特丹的两位研究人员才使用被称为“图卷积网络”(GCN)的图神经网络变体展示了这种神经网络的力量。GCN 也是当今最流行的 GNN 之一。

GCN 启发了 Leskovec 和他的两个斯坦福大学研究生创造出 GraphSage——一个展示信息传递功能新工作方式的 GNN。2017 年夏天,担任 Pinterest 首席科学家的 Leskovec 对此 GNN 进行了测试。

1a437c3c-5b7c-11ed-a3b6-dac502259ad0.png

GraphSage 开创了在 GNN 中传递信息的强大聚合技术

他们所创建的 PinSage 是包含 30 亿节点和 180 亿边的推荐系统,这超过了当时的其他 AI 模型。

如今,Pinterest 将 PinSage 应用于整个公司的 100 多个用例。该公司高级机器学习工程师 Andrew Zhai 于在线座谈会上表示:“没有 GNN,Pinterest 就不会有今天的吸引力。”

与此同时,其他变体和混合体也纷纷出现,包括图循环网络、图注意力网络等。GAT 借用 Transformer 模型中定义的注意力机制,帮助 GNN 专注于数据集中最相关的部分。

1b97b5c6-5b7c-11ed-a3b6-dac502259ad0.png

GNN 变体家族树概览图

扩展图神经网络

展望未来,GNN 需要进行全方位的扩展。

还未维护图数据库的企业机构需要使用工具来减轻创建这些复杂数据结构的工作负担。

使用图数据库的人都知道在某些情况下这些数据库会不断扩大,单个节点或边缘会被嵌入成千上万个特征。这为通过网络将存储于子系统中的海量数据集高效加载到处理器中带来了挑战。

Eaton 表示:“我们正在提供各种产品来最大程度地提高加速系统的内存、计算带宽与吞吐量,以便解决此类数据加载和扩展问题。”

作为这项工作的内容之一,NVIDIA 在 GTC 上宣布,除了深度图库(DGL)之外,公司现在还支持 PyTorch Geometric(PyG)。这是当下最流行的两个 GNN 软件框架。

1bde7d4e-5b7c-11ed-a3b6-dac502259ad0.png

NVIDIA 提供多种工具加快 GNN 的构建

经过 NVIDIA 优化的 DGL 和 PyG 容器针对 NVIDIA GPU 进行了性能调整和测试。它们为开始使用 GNN 开发应用的人提供了方便的平台。
审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4827

    浏览量

    106799
  • AI
    AI
    +关注

    关注

    89

    文章

    38108

    浏览量

    296653
  • 深度学习
    +关注

    关注

    73

    文章

    5590

    浏览量

    123907

原文标题:什么是图神经网络?

文章出处:【微信号:NVIDIA_China,微信公众号:NVIDIA英伟达】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    NMSIS神经网络库使用介绍

    NMSIS NN 软件库是一组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理器内核上的神经网络的性能并最​​大限度地减少其内存占用。 该库分为多个功能,每个功能涵盖特定类别
    发表于 10-29 06:08

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    本帖欲分享在Ubuntu20.04系统中训练神经网络模型的一些经验。我们采用jupyter notebook作为开发IDE,以TensorFlow2为训练框架,目标是训练一个手写数字识别的神经网络
    发表于 10-22 07:03

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    1.算法简介液态神经网络(LiquidNeuralNetworks,LNN)是一种新型的神经网络架构,其设计理念借鉴自生物神经系统,特别是秀丽隐杆线虫的神经结构,尽管这种微生物的
    的头像 发表于 09-28 10:03 706次阅读
    液态<b class='flag-5'>神经网络</b>(LNN):时间连续性与动态适应性的<b class='flag-5'>神经网络</b>

    神经网络的并行计算与加速技术

    随着人工智能技术的飞速发展,神经网络在众多领域展现出了巨大的潜力和广泛的应用前景。然而,神经网络模型的复杂度和规模也在不断增加,这使得传统的串行计算方式面临着巨大的挑战,如计算速度慢、训练时间长等
    的头像 发表于 09-17 13:31 887次阅读
    <b class='flag-5'>神经网络</b>的并行计算与加速技术

    无刷电机小波神经网络转子位置检测方法的研究

    摘要:论文通过对无刷电机数学模型的推导,得出转角:与三相相电压之间存在映射关系,因此构建了一个以三相相电压为输人,转角为输出的小波神经网络来实现转角预测,并采用改进遗传算法来训练网络结构与参数,借助
    发表于 06-25 13:06

    神经网络压缩框架 (NNCF) 中的过滤器修剪统计数据怎么查看?

    无法观察神经网络压缩框架 (NNCF) 中的过滤器修剪统计数据
    发表于 03-06 07:10

    BP神经网络网络结构设计原则

    BP(back propagation)神经网络是一种按照误差逆向传播算法训练的多层前馈神经网络,其网络结构设计原则主要基于以下几个方面: 一、层次结构 输入层 :接收外部输入信号,不进行任何计算
    的头像 发表于 02-12 16:41 1254次阅读

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 1307次阅读

    BP神经网络的优缺点分析

    BP神经网络(Back Propagation Neural Network)作为一种常用的机器学习模型,具有显著的优点,同时也存在一些不容忽视的缺点。以下是对BP神经网络优缺点的分析: 优点
    的头像 发表于 02-12 15:36 1586次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播算法的介绍: 一、基本概念 反向传播算法是BP
    的头像 发表于 02-12 15:18 1277次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural N
    的头像 发表于 02-12 15:15 1341次阅读

    BP神经网络的基本原理

    BP神经网络(Back Propagation Neural Network)的基本原理涉及前向传播和反向传播两个核心过程。以下是关于BP神经网络基本原理的介绍: 一、网络结构 BP神经网络
    的头像 发表于 02-12 15:13 1518次阅读

    BP神经网络在图像识别中的应用

    BP神经网络在图像识别中发挥着重要作用,其多层结构使得网络能够学习到复杂的特征表达,适用于处理非线性问题。以下是对BP神经网络在图像识别中应用的分析: 一、BP神经网络基本原理 BP
    的头像 发表于 02-12 15:12 1188次阅读

    深度学习入门:简单神经网络的构建与实现

    深度学习中,神经网络是核心模型。今天我们用 Python 和 NumPy 构建一个简单的神经网络神经网络由多个神经元组成,神经元之间通过
    的头像 发表于 01-23 13:52 842次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工神经网络模型之所
    的头像 发表于 01-09 10:24 2249次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法