0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

界面工程调控NiCoP/NiO核壳结构电催化剂用于锌空气电池和电解水

清新电源 来源:绿色能源与环境GEE 作者:GEE编辑部 2022-10-08 09:32 次阅读

研究背景

近年来,过渡金属磷化物(TMPs)具有可调的成分、结构,独特的物理化学性质以及多功能活性位点被系统性地研究,以触发氧的电化学反应。由于电催化过程主要发生在材料的表面或靠近表面处,所以采用诸如元素掺杂、表面和界面调节、晶面调节、相位调节和结构工程等策略来优化TMPs的电催化活性,以降低氧的电化学过电位。

研究证实,空位与界面工程的结合可以在异质结电催化材料中赋予强大的电子相互作用,调节催化剂的电子结构、表面能以及表面吸附/脱附过程,从而提供协同介导的活性位点。本研究结合异质界面工程和空位工程来合成TMPs基复合电催化材料,用于加快氧/氢电化学催化反应,并揭示其本征的“结构-活性”关系,对优化其储能催化性能具有特别的意义。

ffebe58e-46a6-11ed-96c9-dac502259ad0.jpg

图文解读

近日,重庆大学徐朝和教授与王荣华副教授通过空位和异质界面工程,可控制备了以氧空位为主的NiCoP/NiO核壳异质结用作高效氧/氢气电化学反应催化剂。理论计算和电化学性能测试结果表明,核层的NiCoP与壳层的NiO杂化产生了强大的协同电子耦合效应。氧空位可以使带隙内出现新的电子态,优化了局部电子结构。

此外,层状的NiCoP/NiO核壳纳米阵列赋予了催化剂暴露多个活性位点,使其具有更快的传质行为和更高的转换效率,从而改善了锌空气电池和电解水的电化学性能。

如图1所示,阐明了NiCoP/NiO异质结构中电荷分布的不均匀性,NiCoP/NiO的电荷密度聚集在NiCoP的外表面。其中NiO作为电子供体,向NiCoP捐赠了0.3420个e,这可能标志着NiCoP/NiO异质结界面电子聚集且分布不均匀,增强了结合力,有O空位的结构由于没有带隙和更接近费米能级而有利于加快电子转移,更易调控催化反应,从而加速反应动力学,促进催化反应的进行。

因此,基于密度泛函理论(DFT)的模拟,具有P/O空位的NiCoP/NiO异质结具有强耦合协同效应,可以通过调节电子结构和增加活性位点来促进电催化反应活性。

001a1094-46a7-11ed-96c9-dac502259ad0.png


图 1. DFT 计算(a)NiCoP,(b)NiO 和(c)NiCoP/NiO 异质结构的优化结构模型。(d)ELF及(e)NiCoP(111)/NiO (200)异质结构的相应的2D数据显示图。(f-g)NiCoP/NiO异质结构界面的电荷密度差分布(其中f是俯视图,g是侧视图)。青色和黄色的等值面分别代表了系统中的电子耗散(减少)和电子聚集(增加)。(h)NiCoP/NiO: P/O 空位,NiCoP:P 空位,NiO:O空位和NiO的TDOS。

NiCoP/NiO核壳异质结的制备流程如图2所示,首先通过一次水热法和磷化方法制备NiCoP/CC,然后通过二次水热和煅烧处理,得到了NiCoP/NiO@CC核壳异质结纳米阵列。通过二次水热反应和随后的煅烧,NiO纳米片外壳沿着NiCoP纳米线原位生长。通过SEM(图3a-c)和TEM(图3d-f)研究了CC上的NiCoP/NiO核壳纳米阵列(NiCoP/NiO@CC)的微观结构。

正如这些图中所呈现的,成功地获得了分层的核壳和树枝状结构,纳米线呈针状,最粗部位的直径约为150 nm,其中NiO纳米片沿多孔的NiCoP纳米线随机包覆。受益于原位成核生长以及良好的晶格匹配,可以构建一个合适的接触界面,这对改善界面电荷转移和提高电化学反应中的离子扩散动力学是有帮助的。排列整齐的纳米阵列有望暴露出更多的活性位点和丰富的三相反应区,以促进电化学催化反应。

00b360b4-46a7-11ed-96c9-dac502259ad0.png


图 2. 三功能NiCoP/NiO@CC核壳异质结电催化剂的制备流程图。

随后通过XRD验证了NiCoP/NiO的复合晶型结构(图4a),接着采用XPS测试分析了NiCoP/NiO的化学键及价态信息(图4b-e)。EPR测试来检测NiCoP/Ni和NiO的空位(图4f),在NiCoP/NiO和NiO中g值大约为2.0的EPR信号可以归因于未配对电子的存在,表明存在O或P空位。NiCoP/NiO中P空位的EPR信号很弱,比含有氧空位的NiCoP/NiO的EPR信号弱得多,表明有少量的磷空位,这揭示了在NiCoP/NiO异质结构中存在大量的氧空位和少量的磷空位。

0130b910-46a7-11ed-96c9-dac502259ad0.png

图 3. NiCoP/NiO核壳材料的微观结构。(a-c)NiCoP/NiO@CC样品的SEM和(d-f)TEM图。(g-h)NiCoP/NiO核壳结构的HRTEM图。(i)Ni、Co、P和O的元素分布图。

02fe9e10-46a7-11ed-96c9-dac502259ad0.png

图 4.(a)NiCoP/NiO@CC的XPS全谱。(b)Ni 2p,(c)Co 2p,(d)P 2p和(e)O 1s的高分辨XPS光谱。(f)NiCoP/NiO和NiO的EPR光谱(其中NiCoP/NiO:O代表有氧空位的NiCoP/NiO,NiCoP/NiO: P代表有磷空位的NiCoP/NiO,NiO: O代表有O空位的NiO)。

在KOH的碱性环境下,对NiCoP/NiO材料的催化性能进行了表征。如图5所示,对比NiCoP和NiO样品,NiCoP/NiO催化剂展现出最小的OER过电位和Tafel斜率,最大的电流密度和最高的起始电势。这些结果表明,通过空位和界面工程,能够有效地提高NiCoP/NiO的氧电催化活性和选择性。

03367b3c-46a7-11ed-96c9-dac502259ad0.png

图 5. NiCoP/NiO、NiCoP和NiO的电化学性能。(a)OER极化曲线,(b)10和 30 mA cm−2电流密度所需的OER过电位,(c)OER极化曲线对应的Tafel斜率,(d)NiCoP/NiO在1.0 M KOH中及1.49 V电压下的电流密度时间曲线;(e)HER极化曲线及对应的Tafel斜率(f);(g)NiCoP/NiO和Pt/C+Ir/C催化剂电解水性能;(h)ORR极化曲线(1600 rpm)及对你对应的Tafel斜率(i)。

此外,采用NiCoP/NiO@CC作为空气电极,Zn片作为负极,6 M KOH和0.2 M Zn(Ac)2混合溶液作为电解质,自制成锌空气电池(图6a)。并制作了Pt/C和Ir/C(Pt/C+Ir/C,质量比为1:1)作为参照电极进行比较。如图6b所示,NiCoP/NiO的放电电压平台只比Pt/C+Ir/C略低,而NiCoP/NiO的充电电压平台大约和Pt/C+Ir/C相等。这一结果再次证明了NiCoP/NiO具有杰出的OER性能。

基于NiCoP/NiO@CC的电池在24小时内可稳定地提供1.433 V的开路电压,在前8小时内明显略高于基于Pt/C+Ir/C@CC电极的电池,然后基本趋于平衡(图6c)。图6d显示了NiCoP/NiO@CC驱动的电池在5和10 mA cm−2时的恒电流放电曲线,通过对锌消耗的质量进行归一化,计算出基于NiCoP/NiO@CC的锌空气电池的具体容量分别为742.44和704.94 mAh gZn−1。

为了满足各种特定功率的要求,可以将多个锌空气电池串联在电路中。如图6e所示,串联两个基于NiCoP/NiO@CC空气正极的锌空气电池可以为一串紫色发光二极管LED,大约3 V)供电。此外,串联三个装有NiCoP/NiO@CC的锌空气电池可以同时为一串红色LED(2 V)和一个黄色LED面板(3 V)同时持续供电(6f)。

充放电电压循环曲线如图6g-h所示,带有NiCoP/NiO@CC空气正极的电池可以在5 mA cm−2条件下稳定运行91个周期(约182小时)而没有明显的性能衰减,这比Pt/C+Ir/C@CC空气正极循环时间(80个周期/160小时)更长。基于NiCoP/NiO@CC的锌空气电池正极提供了2.02 V的初始充电电位,1.16 V的放电电位和57.43%的往返效率,几乎没有放电/充电极化,并且在10 mA cm−2下循环113小时,具有可接受的可逆性。

经过55次循环,基于NiCoP/NiO@CC的空气正极的往返效率几乎保持在58.05%;基于Pt/C+Ir/C@CC的空气电极,初始放电电压为1.21 V,充电电压为2.06 V,往返效率为58.74%。这些结果揭示了NiCoP/NiO催化剂在可充电锌空气电池领域应用的潜力。

03a32ade-46a7-11ed-96c9-dac502259ad0.png

图 6. 电池的结构和在环境空气中的可充电锌空气电池的性能。(a)由NiCoP/NiO和Pt/C+Ir/C驱动的自制锌空气电池的示意图。(b)放电-充电极化曲线和功率密度曲线。(c)开路电压图,图(c)中的插图是开路电压为1.433 V的锌空气电池的照片(左)和局部放大的照片(右)。(d)NiCoP/NiO作为空气电极在5和10 mA cm–2时的放电比容量图。(e)由两个自制的NiCoP/NiO作为锌空气电池空气正极串联驱动一串紫色LED灯的数字图像。(f)由三个基于NiCoP/NiO的锌空气电池同时给一串红色LED和一个橙色LED屏供电的数字图像。比较NiCoP/NiO和Pt/C+Ir/C正极的锌空气电池在(g)5和(h)10 mA cm–2及2小时每圈的截止时间下的循环稳定性(每个周期放电1小时和充电1小时)。插图(h)是以NiCoP/NiO(左)和Pt/C+Ir/C(右)催化剂为正极的锌空气电池在10 mA cm–2下的充放电电压图。

综上所述,本工作成功地构建了具有P/O空位的NiCoP/NiO核壳异质结构,可促进碱性条件下氧/氢电化学反应速率。采用DFT系统地研究NiCoP/NiO核壳异质结电催化剂的几何电子特性,独特的NiCoP/NiO核壳异质结构电催化剂对锌空气电池及电解水均显示出高效的催化转换电化学性能。

这种优秀的电化学性能可能来自于以下几个典型的特征:① NiCoP纳米线和NiO纳米片可以作为彼此的促进剂,通过电子耦合效应加速反应动力学;② 含有氧和磷空位的缺陷使得催化剂具有金属特性,显著改变了其电子结构和物化性质,改善了界面电子迁移率;③ 分层的核壳结构有利于暴露丰富的活性位点,从而促进电解质和气体的传输行为。这项工作表明,缺陷策略和异质界面工程在催化和能源转换相关的实际应用中具有巨大的潜力。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • DFT
    DFT
    +关注

    关注

    2

    文章

    219

    浏览量

    22469
  • EPR
    EPR
    +关注

    关注

    0

    文章

    30

    浏览量

    8267
  • 充电电压
    +关注

    关注

    0

    文章

    26

    浏览量

    6699

原文标题:徐朝和&王荣华GEE:界面工程调控NiCoP/NiO核壳结构电催化剂,用于锌空气电池和电解水

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    调控对镍锡合金的电催化氮还原调控机制研究

    电催化氮还原反应(NRR)是在常规条件下合成氨(NH3)的一种有效方法,但其催化性能(例如:选择性、催化效率等)在很大程度上取决于催化剂的物理性质。
    的头像 发表于 03-26 09:09 198次阅读
    相<b class='flag-5'>调控</b>对镍锡合金的<b class='flag-5'>电催化</b>氮还原<b class='flag-5'>调控</b>机制研究

    不同类型的电池电解质都是什么?

    电解质通过促进离子在充电时从阴极到阳极的移动以及在放电时反向的移动,充当使电池导电的催化剂。离子是失去或获得电子的带电原子,电池电解质由液
    的头像 发表于 02-27 17:42 351次阅读

    催化剂利用率提高237倍!首次电化学生长超低负载铂纳米片超薄电极

    为实现低成本的质子交换膜电解槽(PEMECs)绿氢生产,迫切需要具有极低催化剂负载量、高催化剂利用率和易于制造的纳米结构催化剂集成电极。
    的头像 发表于 10-11 16:11 564次阅读
    <b class='flag-5'>催化剂</b>利用率提高237倍!首次电化学生长超低负载铂纳米片超薄电极

    石墨烯负载金属氧化物催化剂的制备方法

    。但是在制备高品质纯石墨烯时所需条件仍然较为苛刻,且涉 及复杂的工艺过程,因此真正以“完美”石墨烯作为催化剂载体的研究相对较少。除此之外,比起“完美”石墨烯片,有边缘位点和缺陷的“不完美”石墨烯作为电催化剂载体在电子性质等 方面具有更显著的活性。
    发表于 08-11 10:45 453次阅读

    -40°C下工作的高性能锌空气电池简介

    高动力学氧还原反应(ORR)电催化剂在低温条件下对于温度耐受能量转换和储存设备至关重要,但仍未得到充分研究。
    发表于 08-10 09:19 300次阅读
    -40°C下工作的高性能锌<b class='flag-5'>空气</b><b class='flag-5'>电池</b>简介

    可回收光催化剂结构调控催化性能研究

    催化剂是一类能够在光照条件下催化化学反应的材料,广泛应用于环境净化、水处理、能源转换等领域。
    的头像 发表于 08-09 10:44 660次阅读
    可回收光<b class='flag-5'>催化剂</b>的<b class='flag-5'>结构</b><b class='flag-5'>调控</b>与<b class='flag-5'>催化</b>性能研究

    构建提高酸性水氧化催化剂稳定性的氧扩散路径

    将活性组分Ir催化剂锚定在金属氧化物载体上,能有效解决Ir基酸性电解水(OER)催化剂成本高昂的问题,同时易于触发晶格氧氧化机制(LOM)提升Ir基催化剂的活性。
    的头像 发表于 08-02 17:09 521次阅读
    构建提高酸性水氧化<b class='flag-5'>催化剂</b>稳定性的氧扩散路径

    大面积二维Cu2Te垂直阵列催化剂助力CO2电还原

    铜箔表面可控生长大面积二维Cu2Te纳米片垂直阵列的化学气相沉积方法,开发了一种能够实现高效电催化还原CO2合成甲烷的金属相二维层状材料催化剂,为新型二维层状材料的规模化可控制备以及低能耗、高活性和稳定性的CO2RR铜基纳米催化剂
    的头像 发表于 07-17 15:23 661次阅读
    大面积二维Cu2Te垂直阵列<b class='flag-5'>催化剂</b>助力CO2电还原

    双原子催化剂综述:适用于能源和环境催化的双原子催化剂

    原子级分散催化剂具有最大的原子利用率,并且拥有超越传统纳米颗粒的优异性能。
    的头像 发表于 07-17 09:11 4246次阅读
    双原子<b class='flag-5'>催化剂</b>综述:适<b class='flag-5'>用于</b>能源和环境<b class='flag-5'>催化</b>的双原子<b class='flag-5'>催化剂</b>

    中科院大连化物所《Angew》:开发出单原子合金材料

    近日,中国科学院大连化学物理研究所太阳能研究部太阳能制储氢材料与催化研究组研究员章福祥团队设计合成了一种单原子铋修饰铜合金催化剂用于电催化CO2还原。该
    的头像 发表于 07-05 17:10 359次阅读
    中科院大连化物所《Angew》:开发出单原子合金材料

    在微孔中增强电催化氧还原活性!

    由可再生能源驱动的小气体分子电催化为碳中性燃料和化学品的利用与生产提供了一条有前途的途径。
    的头像 发表于 05-29 09:22 1005次阅读
    在微孔中增强<b class='flag-5'>电催化</b>氧还原活性!

    催化剂分离和循环利用问题

      烯烃是现代化工生产高附加值化学品的重要原料。生产烯烃最直接的方法就是通过烷烃直接脱氢生成烯烃。在近30年里,以Ir钳形配合物为催化剂的转移脱氢反应和无受体脱氢反应取得重大进展。但是,受限于
    的头像 发表于 05-23 11:33 524次阅读
    <b class='flag-5'>催化剂</b>分离和循环利用问题

    具有精确构建吡啶-N活性位点的氮掺杂碳球用于高效电催化氧还原

    2022年5月,Applied Surface Science (中科院一区,影响因子7.392)在线发表了三峡大学叶立群教授团队有关CTFs衍生碳材料在电催化氧还原领域的最新研究成果。
    的头像 发表于 05-22 10:02 817次阅读
    具有精确构建吡啶-N活性位点的氮掺杂碳球<b class='flag-5'>用于</b>高效<b class='flag-5'>电催化</b>氧还原

    结构设计策略用于二元金属硫化物界面催化活性提高及其水分解研究

    利用鸿之微Device Studio中的DS-PAW通过第一性原理计算对基于rGO媒介载体上构建的NiS2-MoS2异质结催化剂电催化机制进行研究,计算了差分电荷密度、DOS和PDOS。
    的头像 发表于 05-16 10:35 574次阅读
    <b class='flag-5'>结构</b>设计策略<b class='flag-5'>用于</b>二元金属硫化物<b class='flag-5'>界面</b><b class='flag-5'>催化</b>活性提高及其水分解研究

    介绍一种微调催化性能的有效方法

    近十年来,电催化科学的进步促进了许多相关研究领域的发展,包括H2/O2演化、CO2还原、燃料电池和反应膜。
    的头像 发表于 05-06 09:34 446次阅读
    介绍一种微调<b class='flag-5'>催化</b>性能的有效方法