0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于卷积多层感知器(MLP)的图像分割网络unext

lhl545545 来源:CVer 作者:CVer 2022-09-27 15:12 次阅读

1. 摘要

UNet及其最新的扩展如TransUNet是近年来领先的医学图像分割方法。然而,由于这些网络参数多、计算复杂、使用速度慢,因此不能有效地用于即时应用中的快速图像分割。为此,我们提出了一种基于卷积多层感知器(MLP)的图像分割网络unext。我们设计了一种有效的UNeXt方法,即在前期采用卷积阶段和在后期采用MLP阶段。我们提出了一个标记化的MLP块,在该块中,我们有效地标记和投射卷积特征,并使用MLP来建模表示。

为了进一步提高性能,我们建议在输入mlp时shift输入的channel,以便专注于学习局部依赖性。在潜在空间中使用标记化的mlp减少了参数的数量和计算复杂度,同时能够产生更好的表示,以帮助分割。该网络还包括各级编码器和解码器之间的跳跃连接。测试结果表明,与目前最先进的医学图像分割架构相比,UNeXt的参数数量减少了72x,计算复杂度降低了68x,推理速度提高了10x,同时也获得了更好的分割性能。

2. 网络结构

2.1 网络设计:

UNeXt是一个编码器-解码器体系结构,有两个阶段:

1) 卷积阶段

2) tokenized MLP阶段。

输入图像通过编码器,其中前3个块是卷积,下2个是tokenized MLP块。解码器有2个tokenized MLP块,后面跟着3个卷积块。每个编码器块减少特征分辨率2倍,每个解码器块增加特征分辨率2。跳跃连接也被应用在了编码器和解码器之间

a82f13d8-3e2d-11ed-9e49-dac502259ad0.png

作者减少了每个stage的通道数。

每个stage的通道数,对比标准的Unet:

UNeXt:32 64 128 160 256

UNet:64 128 256 512 1024

在这里面就减少了很多的参数量

2.2 卷积阶段

有三个conv block,每个block都有一个卷积层(传统Unet是两个)、批量归一化层和ReLU激活。我们使用的内核大小为3×3, stride为1,padding为1。编码器的conv块使用带有池窗口2×2的max-pooling层,而解码器的conv块使用双线性插值层对特征图进行上采样。我们使用双线性插值而不是转置卷积,因为转置卷积基本上是可学习的上采样,会导致产生更多可学习的参数

2.3 Shifted MLP

在shifted MLP中,在tokenize之前,我们首先移动conv features通道的轴线。这有助于MLP只关注conv特征的某些位置,从而诱导块的位置。这里的直觉与Swin transformer类似,在swin中引入基于窗口的注意,以向完全全局的模型添加更多的局域性。由于Tokenized MLP块有2个mlp,我们在一个块中跨越宽度移动特征,在另一个块中跨越高度移动特征,就像轴向注意力中一样。我们对这些特征做了h个划分,并根据指定的轴通过j个位置移动它们。这有助于我们创建随机窗口,引入沿轴线的局部性。

a844412c-3e2d-11ed-9e49-dac502259ad0.jpgShift操作

图中灰色是特征块的位置,白色是移动之后的padding。

2.4 Tokenized MLP阶段

a84ccf7c-3e2d-11ed-9e49-dac502259ad0.jpgimage-20220402001733482

在Tokenized MLP块中,我们首先shift features并将它们投射到token中。为了进行token化,我们首先使用3x3conv把特征投射到E维,其中E是embadding维度(token的数量),它是一个超参数。然后我们将这些token传递给一个shifted MLP(跨越width)。接下来,特征通过 DW-Conv传递。然后我们使用GELU激活层。然后,我们通过另一个shifted MLP(跨越height)传递特征,该mlp把特征的尺寸从H转换为了O。我们在这里使用一个残差连接,并将原始标记添加为残差。然后我们利用layer norm(LN),并将输出特征传递到下一个块。LN比BN更可取,因为它更有意义的是沿着token进行规范化,而不是在Tokenized MLP块的整个批处理中进行规范化。

我们在这个块中使用DWConv有两个原因:

1)它有助于编码MLP特征的位置信息。从中可以看出,在一个MLP块中Conv层已经足够对位置信息进行编码,并且实际性能优于标准的位置编码技术。当测试或者训练分辨率不相同时,像ViT中的位置编码技术需要插值,这通常会导致性能下降。

2)DWConv使用更少的参数,因此提高了效率。

Tokenized block的计算流程

a8691240-3e2d-11ed-9e49-dac502259ad0.png

所有这些计算都是在嵌入维数h上执行的,这个维数明显小于特征的维数 (H/N)×(H/N) ,N是关于降维的2的因子。在我们的实验中,除非另有说明,否则我们使用768。这种设计tokenized MLP block的方法有助于编码有意义的特征信息,而不会对计算或参数贡献太多。

3.实验结果

在ISIC和BUSI数据集进行了实验

a893c472-3e2d-11ed-9e49-dac502259ad0.png

在ISIC数据集的对比

a8ba4e80-3e2d-11ed-9e49-dac502259ad0.png

a8cea394-3e2d-11ed-9e49-dac502259ad0.png

a8eecce6-3e2d-11ed-9e49-dac502259ad0.png

4. 个人感悟

首先每个convolutional阶段只有一个卷积层,极大的减少了运算量,是答主第一次见了。

其次是把MLP的模块引入了Unet,算是很新颖了。

在Tokenized MLP block中使用DW- CONV,让人眼前一亮。

审核编辑:彭静
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 解码器
    +关注

    关注

    9

    文章

    1073

    浏览量

    40166
  • 图像分割
    +关注

    关注

    4

    文章

    173

    浏览量

    17864
  • 感知器
    +关注

    关注

    0

    文章

    32

    浏览量

    11793
  • MLP
    MLP
    +关注

    关注

    0

    文章

    56

    浏览量

    4074

原文标题:MICCAI 2022 | UNeXt:第一个基于卷积和MLP的快速医学图像分割网络

文章出处:【微信号:CVer,微信公众号:CVer】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    使用全卷积网络模型实现图像分割

    OpenCv-C++-深度神经网络(DNN)模块-使用FCN模型实现图像分割
    发表于 05-28 07:33

    上海逻迅门磁感知器系统方案

    `上海逻迅门磁感知器方案`
    发表于 02-18 13:33

    如何使用Keras框架搭建一个小型的神经网络多层感知器

    本文介绍了如何使用Keras框架,搭建一个小型的神经网络-多层感知器,并通过给定数据进行计算训练,最好将训练得到的模型提取出参数,放在51单片机上进行运行。
    发表于 11-22 07:00

    van-自然和医学图像的深度语义分割网络结构

    限制了感知域的大小。基于存在的这些问题,由Long等人在2015年提出的FCN结构,第一个全卷积神经网络的语义分割模型。我们要了解到的是,FCN是基于VGG和AlexNet
    发表于 12-28 11:03

    van-自然和医学图像的深度语义分割网络结构

    限制了感知域的大小。基于存在的这些问题,由Long等人在2015年提出的FCN结构,第一个全卷积神经网络的语义分割模型。我们要了解到的是,FCN是基于VGG和AlexNet
    发表于 12-28 11:06

    基于MLP的快速医学图像分割网络UNeXt相关资料分享

    缓慢。这篇文章提出了基于卷积多层感知器MLP)改进 U型架构的方法,可以用于图像分割。设计了一
    发表于 09-23 14:53

    一文详解CNN

    识别、语音识别等场景取得巨大的成功。 CNN的发展史: 提到CNN的发展史,就要提到多层感知器(Multi-Layer Perception, MLP)。(图片来源于3Blue1Brown)
    发表于 08-18 06:56

    人工神经网络在金相图像分割中的应用研究

    摘要: 利用多层感知器神经网络和自组织映射神经网络对球墨铸铁、可锻铸铁和灰铸铁的金相图像进行了分割
    发表于 03-12 16:27 25次下载
    人工神经<b class='flag-5'>网络</b>在金相<b class='flag-5'>图像</b><b class='flag-5'>分割</b>中的应用研究

    人工智能–多层感知器基础知识解读

    感知器(Perceptron)是ANN人工神经网络的一个概念,由Frank Rosenblatt于1950s第一次引入。 MLP多层感知器
    发表于 07-05 14:45 5825次阅读

    AI从入门到放弃:用MLP图像分类识别

    在没有CNN以及更先进的神经网络的时代,朴素的想法是用多层感知机(MLP)做图片分类的识别。
    的头像 发表于 07-09 10:09 7424次阅读

    卷积网络FCN进行图像分割

    Networks for Semantic Segmentation》在图像语义分割挖了一个坑,于是无穷无尽的人往坑里面跳。 全卷积网络 Fully Convolutional Ne
    发表于 09-26 17:22 515次阅读

    多层感知机(MLP)的设计与实现

    多层感知机(Multilayer Perceptron)缩写为MLP,也称作前馈神经网络(Feedforward Neural Network)。它是一种基于神经
    的头像 发表于 03-14 11:31 4345次阅读
    <b class='flag-5'>多层</b><b class='flag-5'>感知</b>机(<b class='flag-5'>MLP</b>)的设计与实现

    PyTorch教程5.2之多层感知器的实现

    电子发烧友网站提供《PyTorch教程5.2之多层感知器的实现.pdf》资料免费下载
    发表于 06-05 15:32 0次下载
    PyTorch教程5.2之<b class='flag-5'>多层</b><b class='flag-5'>感知器</b>的实现

    使用多层感知器进行机器学习

    我们将使用一个极其复杂的微处理器来实现一个神经网络,该神经网络可以完成与由少数晶体管组成的电路相同的事情,这个想法有些幽默。但与此同时,以这种方式思考这个问题强调了单层感知器作为一般分类和函数逼近工具的不足——如果我们的
    的头像 发表于 06-24 11:17 340次阅读
    使用<b class='flag-5'>多层</b><b class='flag-5'>感知器</b>进行机器学习

    卷积神经网络算法有哪些?

    卷积神经网络算法有哪些?  卷积神经网络(Convolutional Neural Network, CNN) 是一种基于多层
    的头像 发表于 08-21 16:50 1171次阅读