0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

比Colab更方便的GPU平台-GPUlab

工程师邓生 来源:易心Microbit编程 作者:易心Microbit编程 2022-09-08 16:24 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

GPUlab是一个提供付费GPU的平台,其接口源自JupyterLab(一种升级版的Jupyternotebook),因此可透过网页接口提供完整的Python IDE接口,除了基本的Notebook,也有terminal、console可用,因此使用起来比起Colab更为方便。

该产品是由一家位于美国加州的Deasil Works公司所提供,主要业务提供AI、Data science等方面的技术咨询。

计费方式

45890192-2f4d-11ed-ba43-dac502259ad0.png

目前提供三种plan,但主要在于购买周期的差异,硬件及执行环境完全相同。三种计费周期为日、周、月,信用卡付款,期限到自动扣款续约。

提供的GPU执行环境

比较值得关心的是GPU执行环境及配置:

1.GPU硬件:Tesla K80 x1,11MB

2.CUDA 10.02

3.Ubuntu 18.04

4.Tensorflow 2.3

5.PyTorch 1.8

6.无法sudo (无root权限)

7.可使用terminal或jupyternotebook来执行程序,或管理/安装移除相关套件。

8.Storage空间无论任何方案皆为25GB。

9.环境及档案可持久保持,不像Colab,Kaggle在超过时数后便自动清空。

Tesla K80其实是由两个K40核心所组成一片24GB的K80,在环境中看到的是两片各为12GB的GPU,由于其架构较老旧,速度在TF1.6测试下仅达GTX 1080一半(参考下图)。

45afaaae-2f4d-11ed-ba43-dac502259ad0.png

硬件规格与GTX 1080比较如下:

45d28678-2f4d-11ed-ba43-dac502259ad0.jpg

(https://www.reddit.com/r/deeplearning/comments/5mc7s6/performance_difference_between_nvidia_k80_and_gtx/)

K80已是八-九年前的产品,使用的framework为Kepler(GTX 1080为差了两代的Pascal,3080以后系列为差了五代的Ampere),从Nvidia的规划(https://zh.wikipedia.org/wiki/CUDA)来看,Kepler只支持到CUDA 10.2,不支持最新的CUDA11.0之后版本。但测试结果,安装了CUDA 11.0之后,还是能在GPUlab的K80 GPU执行训练,这部份请参考后续说明。

GPUlab的使用接口

注册账号,选择要购买的方案种类,使用信用卡缴费后,便会自动设定好环境马上便能使用。

45ed1fec-2f4d-11ed-ba43-dac502259ad0.png

GPUlab environment的界面

45fb55ee-2f4d-11ed-ba43-dac502259ad0.png

点选Notebook中的Python3,会于目前目录(可从左侧窗口的档案总管切换)新建一个notebook。

462c4348-2f4d-11ed-ba43-dac502259ad0.png

点选Console中的Bash,会进入一个可下方命令栏输入bash command的窗口。

464c6be6-2f4d-11ed-ba43-dac502259ad0.png

点选Others中的Terminal,出现一个类似putty接口的终端窗口。

466e82d0-2f4d-11ed-ba43-dac502259ad0.png

输入nvidia-smi

468a8c82-2f4d-11ed-ba43-dac502259ad0.png

输入ls -la /usr/local/cuda,发现CUDA版本是10.1

46b6f448-2f4d-11ed-ba43-dac502259ad0.png

升级CUDA为最新版的11.03

如果想要使用较新的Tensorflow 2.5,那么必须要升级CUDA到最新版本11.X才行,不过目前GPUlab仅支持10.3,官方解释要等到下一版(约在2021年七月底或八月左右)才有支持。如果打算自己安装升级,会发现GPUlab并没有开放sudo root权限,想要升级到11.X版似乎有些困难。

但其实,CUDA/CUDNN安装也可以用户模式来安装,不一定需要root权限。

下载CUDA 11.4

URL//developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=18.04&target_type=runfile_local

$ wgethttps://developer.download.nvidia.com/compute/cuda/11.4.0/local_installers/cuda_11.4.0_470.42.01_linux.run

安装CUDA 11.4

$ chmod755 cuda_11.4.0_470.42.01_linux.run

# ./cuda_11.4.0_470.42.01_linux.run

安装时取消Nvidia driver的安装,并修改安装路径到个人家目录下。(例如:/home/jovyan/cuda-11.4)

安装结束后,于相同路径下新增soft link cuda指向cuda-11.4。

加入path到.bash_profile

exportCUDA_HOME=/home/jovyan/cuda

使用pip升级tensorflwo-gpu及pytorch

pipinstall -U tensorflow-gpu torch torchvision torchaudio

将下方三行加到~/.bash_profile

exportLD_LIBRARY_PATH=/home/jovyan/cuda/lib64:/home/jovyan/cuda/extras/CUPTI/lib64/:${LD_LIBRARY_PATH}

exportLIBRARY_PATH=${LIBRARY_PATH}:/home/jovyan/cuda/lib64:/home/jovyan/extras/CUPTI/lib64:/home/jovyan/cuda/targets/x86_64-linux/lib

从NVidia下载解压CUDNN,并将档案复制到 ~/cuda相对应路径下。

测试

开启一个terminal,import tensorflow,确认可使用11.x版的CUDA。

46cb1dec-2f4d-11ed-ba43-dac502259ad0.png

Ps. 此方法仅对于terminal环境有效,在Jupyternotebook环境可在一开始就先执行:

!source ~/.bash_profile

46e6ebee-2f4d-11ed-ba43-dac502259ad0.png

之后,PyTorch便能使用到新版CUDA了,但Tensorflow还不行。

心得

优点:

1.以每月不到三百元的价格,能使用不限时数11GBRAM的GPU,且已预先装好所有可用的模块,感觉相当划算。

2.若您仅需Jupyter Notebook接口进行基本的模型测试及训练,GPUlab所提供的环境已足敷使用。

3.可同时从不同PC登入portal(看到相同执行画面),亦可同时执行数个程序,只要Disk space及GPU usage没有超过用量。

4.从GPUlab环境存取internet的速度快,例如,从Kaggle透过API下载dataset比在自己PC快相当多。

5.提供的Terminal接口与Notebook搭配使用相当方便。

缺点:

1.提供的K80 GPU速度不是很令人满意,以训练一个参数为600,612的Keras UNet模型来说,在最新GTX 3080 GPU每epochs约117 s,K80则需要383 s,两者差距了三倍之多。

2.提供的Disk space仅有25GB,一次无法放置太多数量的dataset。

3.无sudo的root权限,因此,无法自行控制或修改更多的环境配置。

4.预载的CUDA仅支持到10.3,虽可自行升级到CUDA11.X,但会占用到disk quota(约8G)。

5.环境未安装libopencv-dev套件,且也无法透过sudoapt-get install libopencv-dev 自行安装,这使得训练YOLO的Darknetframe在编译时若enableOpenCV,会产生error。




审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • gpu
    gpu
    +关注

    关注

    28

    文章

    5102

    浏览量

    134485
  • IDE接口
    +关注

    关注

    0

    文章

    14

    浏览量

    13677
  • python
    +关注

    关注

    57

    文章

    4858

    浏览量

    89609

原文标题:比Colab/Kaggle更方便的GPU平台-GPUlab

文章出处:【微信号:易心Microbit编程,微信公众号:易心Microbit编程】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    aicube的n卡gpu索引该如何添加?

    请问有人知道aicube怎样才能读取n卡的gpu索引呢,我已经安装了cuda和cudnn,在全局的py里添加了torch,能够调用gpu,当还是只能看到默认的gpu0,显示不了gpu1
    发表于 07-25 08:18

    可以手动构建imx-gpu-viv吗?

    使用 imx-gpu-viv-6.4.3.p4.2.aarch64.bin。 https://www.nxp.com/lgfiles/NMG/MAD/YOCTO//imx-gpu-viv-6.4.3.p4.2-aarch64.bin 我需要
    发表于 03-28 06:35

    ​为什么GPU性能效率峰值性能关键

    在评估GPU性能时,通常首先考察三个指标:图形工作负载的纹理率(GPixel/s)、浮点运算次数(FLOPS)以及它们能处理计算和AI工作负载的每秒8-bittera运算次数(TOPS)。这些关键
    的头像 发表于 03-13 08:34 730次阅读
    ​为什么<b class='flag-5'>GPU</b>性能效率<b class='flag-5'>比</b>峰值性能<b class='flag-5'>更</b>关键

    智能座舱SoC,急需更强大的GPU IP

    单元。   在汽车上,GPU的应用非常广泛。在智能座舱和人机交互等应用中,GPU需要渲染屏幕上的UI,包括仪表盘、中控屏、副驾和后排娱乐屏等,有利用显示屏实现人机交互的地方,都需要有GPU的存在。
    的头像 发表于 03-09 08:36 2547次阅读
    智能座舱SoC,急需更强大的<b class='flag-5'>GPU</b> IP

    无法在GPU上运行ONNX模型的Benchmark_app怎么解决?

    在 CPU 和 GPU 上运行OpenVINO™ 2023.0 Benchmark_app推断的 ONNX 模型。 在 CPU 上推理成功,但在 GPU 上失败。
    发表于 03-06 08:02

    在Google Colab笔记本电脑上导入OpenVINO™工具包2021中的 IEPlugin类出现报错,怎么解决?

    在 Google* Colab Notebook 上OpenVINO™工具包 2021 中使用了 IEPlugin 。 遇到: ImportError: cannot import name \'IEPlugin\' from \'openvino.inference_engine\'
    发表于 03-05 10:31

    OpenVINO™检测到GPU,但网络无法加载到GPU插件,为什么?

    OpenVINO™安装在旧的 Windows 10 版本 Windows® 10 (RS1) 上。 已安装 GPU 驱动程序版本 25.20.100.6373,检测到 GPU,但网络无法加载
    发表于 03-05 06:01

    GPU加速计算平台的优势

    传统的CPU虽然在日常计算任务中表现出色,但在面对大规模并行计算需求时,其性能往往捉襟见肘。而GPU加速计算平台凭借其独特的优势,吸引了行业内人士的广泛关注和应用。下面,AI部落小编为大家分享GPU加速计算
    的头像 发表于 02-23 16:16 772次阅读

    GPU算力租用平台有什么好处

    当今,GPU算力租用平台为科研机构、企业乃至个人开发者提供了灵活高效的算力解决方案。下面,AI部落小编带您深入探讨GPU算力租用平台所带来的诸多好处。
    的头像 发表于 02-07 10:39 727次阅读

    FPGA+GPU+CPU国产化人工智能平台

    平台采用国产化FPGA+GPU+CPU构建嵌入式多核异构智算终端,可形成FPGA+GPU、FPGA+CPU、CPU+FPGA等组合模式,形成低功耗、高可扩展性的硬件系统,结合使用场景灵活搭配,已有
    的头像 发表于 01-07 16:42 1766次阅读
    FPGA+<b class='flag-5'>GPU</b>+CPU国产化人工智能<b class='flag-5'>平台</b>

    ASIC和GPU的原理和优势

    芯片”。 准确来说,除了它俩,计算芯片还包括大家熟悉的CPU,以及FPGA。 行业里,通常会把半导体芯片分为数字芯片和模拟芯片。其中,数字芯片的市场规模占比较大,达到70%左右。 数字芯片,还可以进一步细分,分为:逻辑芯片、存储芯片以及微控制单元(MCU)。CPU、GPU
    的头像 发表于 01-06 13:58 3110次阅读
    ASIC和<b class='flag-5'>GPU</b>的原理和优势

    GPU加速云服务器怎么用的

    GPU加速云服务器是将GPU硬件与云计算服务相结合,通过云服务提供商的平台,用户可以根据需求灵活租用带有GPU资源的虚拟机实例。那么,GPU
    的头像 发表于 12-26 11:58 864次阅读

    《CST Studio Suite 2024 GPU加速计算指南》

    GPU Computing Guide》是由Dassault Systèmes Deutschland GmbH发布的有关CST Studio Suite 2024的GPU计算指南。涵盖GPU计算
    发表于 12-16 14:25