0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

关于YOLOv7.0 版本的分类、检测和分割

新机器视觉 来源:集智书童 作者:集智书童 2022-08-22 10:31 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

导读 YOLOv5是目前Yolo系列应用非常广的算法,迭代了很多版本,目前已升级到V6.2版本,从原本训练目标检测,到也可训练分类模型,整个算法生态越来越完善,通过本文的梳理,希望对大家学习有帮助。

yolov5-6.2增加了分类训练、验证、预测和导出(所有 11 种格式),还提供了 ImageNet 预训练的 YOLOv5m-cls、ResNet(18、34、50、101) 和 EfficientNet (b0-b3) 模型。

此次发布的主要目标是引入超级简单的 YOLOv5 分类工作流程,就像现有的目标检测模型一样。以下新的 v6.2 YOLOv5-cls 模型只是一个开始,作者将继续与现有的检测模型一起改进这些模型。

下一个版本 v6.3 计划于 9 月发布,将为 YOLOv5 带来官方实例分割支持,今年晚些时候将发布一个主要的 v7.0 版本,更新所有 3 个任务的架构——分类、检测和分割。

1、重要更新

分类模型:TensorFlow、Keras、TFLite、TF.js 模型导出现在使用python export.py --include saved_model pb tflite tfjs完全集成。

ClearML日志记录:与开源实验跟踪器 ClearML 集成。使用 pip install clearml 安装将启用集成并允许用户跟踪在 ClearML 中运行的每个训练。这反过来又允许用户跟踪和比较运行,甚至远程安排运行。

Deci.ai优化:一键自动编译和量化 YOLOv5 以获得更好的推理性能。

GPU导出基准:使用 python utils/benchmarks.py --weights yolov5s.pt --device 0 用于 GPU 基准测试或 --device cpu 用于 CPU 基准测试,对所有 YOLOv5 导出格式进行基准测试(mAP 和速度)。

训练可再现性:使用 torch>=1.12.0 的单 GPU YOLOv5 训练现在完全可再现,并且可以使用新的 --seed 参数(默认种子 = 0)。

Apple Metal Performance Shader (MPS) 支持:通过 --device mps 对 Apple M1/M2 设备的 MPS 支持(完整功能在 pytorch/pytorch#77764 中等待更新)。

2、分类模型与精度

使用 4×A100 在 ImageNet 上训练了 YOLOv5-cls 分类模型 90 个 epoch,并且训练了 ResNet 和 EfficientNet 模型以及相同的默认训练设置进行比较。将所有模型导出到 ONNX FP32 进行 CPU 速度测试,并将所有模型导出到 TensorRT FP16 进行 GPU 速度测试。在 Google Colab Pro 上进行了所有速度测试,以便轻松重现。

e3b52dee-205e-11ed-ba43-dac502259ad0.png   e3c760ea-205e-11ed-ba43-dac502259ad0.png

3、使用

YOLOv5 分类训练支持使用 --data 参数自动下载 MNIST、Fashion-MNIST、CIFAR10、CIFAR100、Imagenette、Imagewoof 和 ImageNet 数据集。例如,要开始在 MNIST 上进行训练,使用 --data mnist。

train

#Single-GPU
pythonclassify/train.py--modelyolov5s-cls.pt--datacifar100--epochs5--img224--batch128

#Multi-GPUDDP
python-mtorch.distributed.run--nproc_per_node4--master_port1classify/train.py--modelyolov5s-cls.pt--dataimagenet--epochs5--img224--device0,1,2,3

val

bashdata/scripts/get_imagenet.sh--val#downloadImageNetvalsplit(6.3G,50000images)
pythonclassify/val.py--weightsyolov5m-cls.pt--data../datasets/imagenet--img224#validate

test

pythonclassify/predict.py--weightsyolov5s-cls.pt--datadata/images/bus.jpg

4、构建形式

分类模型的构建依旧是YOLOv5的风格,加入了分类的head,这里点赞,不怕没有预训练权重了!

classClassificationModel(BaseModel):
#YOLOv5classificationmodel
def__init__(self,cfg=None,model=None,nc=1000,cutoff=10):#yaml,model,numberofclasses,cutoffindex
super().__init__()
self._from_detection_model(model,nc,cutoff)ifmodelisnotNoneelseself._from_yaml(cfg)

def_from_detection_model(self,model,nc=1000,cutoff=10):
#CreateaYOLOv5classificationmodelfromaYOLOv5detectionmodel
ifisinstance(model,DetectMultiBackend):
model=model.model#unwrapDetectMultiBackend
model.model=model.model[:cutoff]#backbone
m=model.model[-1]#lastlayer
ch=m.conv.in_channelsifhasattr(m,'conv')elsem.cv1.conv.in_channels#chintomodule
c=Classify(ch,nc)#Classify()
c.i,c.f,c.type=m.i,m.f,'models.common.Classify'#index,from,type
model.model[-1]=c#replace
self.model=model.model
self.stride=model.stride
self.save=[]
self.nc=nc

def_from_yaml(self,cfg):
#CreateaYOLOv5classificationmodelfroma*.yamlfile
self.model=None
审核编辑:彭静
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 开源
    +关注

    关注

    3

    文章

    4031

    浏览量

    45545
  • 模型
    +关注

    关注

    1

    文章

    3648

    浏览量

    51692
  • 跟踪器
    +关注

    关注

    0

    文章

    133

    浏览量

    20787

原文标题:​Yolov5-6.2版本更新,Yolov5也可训练分类模型,语义分割+实例分割即将发布!

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    基于级联分类器的人脸检测基本原理

    本次分享的内容是基于级联分类器的人脸检测基本原理 1) 人脸检测概述 关于人脸检测算法,目前主流方法分为两类,一类是基于知识,主要方法包
    发表于 10-30 06:14

    使用ROCm™优化并部署YOLOv8模型

    版本的基础上进行了改进,引入了新的特性和优化,使其成为各种应用中各种目标检测 https://www.ultralytics.com/blog
    的头像 发表于 09-24 18:32 504次阅读
    使用ROCm™优化并部署<b class='flag-5'>YOLOv</b>8模型

    单板挑战4路YOLOv8!米尔瑞芯微RK3576开发板性能实测

    ,-pos来演示。米尔基于RK3576开发板 单独测试视频场景1.YOLOv8s.int 目标检测模型 2.YOLOv8s-seg.int 实例分割模型 3.
    发表于 09-12 17:52

    基于瑞芯微RK3576的 yolov5训练部署教程

    5s、YOLOv5m、YOLOv5l、YOLOv5x 四个模型。YOLOv5 相比YOLOv4 而言,在
    的头像 发表于 09-11 16:43 2378次阅读
    基于瑞芯微RK3576的 <b class='flag-5'>yolov</b>5训练部署教程

    在k230上使用yolov5检测图像卡死,怎么解决?

    0.99以上 模型转换指令 再将该模型放到k230设备上使用yolo大作战中yolov5检测示例,检测就会卡死,打印出的检测结果会超过1。 目前无从下手,大佬们求救!
    发表于 08-11 07:41

    yolov5训练部署全链路教程

    5m、YOLOv5l、YOLOv5x四个模型。YOLOv5相比YOLOv4而言,在检测平均精度降低不多的基础上,具有均值权重文件更小,训练时
    的头像 发表于 07-25 15:22 1335次阅读
    <b class='flag-5'>yolov</b>5训练部署全链路教程

    RK3576 yolo11-seg训练部署教程

    分割头设计,实现了像素级的精确目标检测分割,适用于自动驾驶、医学影像、工业检测等对精度和速度要求苛刻的场景。本教程针对目标分割算法
    的头像 发表于 07-25 15:21 1219次阅读
    RK3576 yolo11-seg训练部署教程

    【Milk-V Duo S 开发板免费体验】5 - 使用YOLOv11进行目标检测

    ,语义分割,车牌辨识,车牌检测,活体识别,IR活体识别,婴儿检测,哭声检测,姿态检测,手势侦测,手势识别 等算法。 我们要使用
    发表于 07-24 14:57

    YOLOv8水果检测示例代码换成640输入图像出现目标框绘制错误的原因 ?

    官网中的YOLOv8 水果检测关于图片推理的示例源代码: from libs.YOLO import YOLOv8 import os,sys,gc import ulab.numpy
    发表于 06-18 06:37

    如何修改yolov8分割程序中的kmodel?

    自定义YOLOv8分割类class SegmentationApp(AIBase): def __init__(self,kmodel_path,labels,model_input_size
    发表于 04-25 08:22

    labview调用yolov8/11目标检测分割分类

    labview使用2020版本64位编辑,调用yolov8/11的onnx模型案例。 源码: 通过网盘分享的文件:Labview_cls.zip等4个文件 链接: https
    发表于 04-21 19:37

    RV1126 yolov8训练部署教程

    YOLOv8 是 ultralytics 公司在 2023 年 1月 10 号开源的基于YOLOV5进行更新的 下一个重大更新版本,目前支持图像分类、物体
    的头像 发表于 04-16 14:53 1130次阅读
    RV1126 <b class='flag-5'>yolov</b>8训练部署教程

    RK3576 yolov11-seg训练部署教程

    级的精确目标检测分割,适用于自动驾驶、医学影像、工业检测等对精度和速度要求苛刻的场景。        本教程针对目标分割算法yolov1
    的头像 发表于 04-16 09:43 1882次阅读
    RK3576 <b class='flag-5'>yolov</b>11-seg训练部署教程

    labview调用yolo目标检测分割分类、obb

    labview调用yolo目标检测分割分类、obb、pose深度学习,支持CPU和GPU推理,32/64位labview均可使用。 (yolov5~
    发表于 03-31 16:28

    采用华为云 Flexus 云服务器 X 实例部署 YOLOv3 算法完成目标检测

    一、前言 1.1 开发需求 这篇文章讲解: 采用华为云最新推出的 Flexus 云服务器 X 实例部署 YOLOv3 算法,完成图像分析、目标检测。 随着计算机视觉技术的飞速发展,深度学习模型如
    的头像 发表于 01-02 12:00 1019次阅读
    采用华为云 Flexus 云服务器 X 实例部署 <b class='flag-5'>YOLOv</b>3 算法完成目标<b class='flag-5'>检测</b>