0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

自旋量子比特在量子计算领域具有更好的发展前景

IEEE电气电子工程师 来源:IEEE电气电子工程师 作者:IEEE电气电子工程师 2022-08-17 10:52 次阅读

量子计算机理论上可以解决任何经典计算机都无法解决的问题,但前提是它们拥有许多被称为量子比特的部分。现在,科学家已经在一个芯片上制造了超过15万个硅基量子比特,它们可能能够与光连接在一起,以帮助形成通过量子互联网连接的强大量子计算机。

我们知道,经典计算机通过打开或关闭晶体管来将数据表示为 1 或 0。相比之下,量子计算机使用量子比特。并且,由于量子物理学的超现实属性,量子比特可以在叠加态中存在,在这种状态中它们基本上同时表示为 1 和 0。这种现象让每个量子比特同时执行两次计算。在量子计算机中,连接或纠缠的量子比特越多,计算能力就会以指数方式增加。

目前,量子计算机是嘈杂中型量子(noisy intermediate-scale quantum, NISQ)平台,这意味着它们的量子比特数最多可达几百个。但为了证明对实际应用的效用,未来的量子计算机可能需要数千个量子比特来帮助抵消误差。

与此同时,很多不同类型的量子比特正在开发之中,如超导电路、电磁俘获离子和冷冻氖。在这项研究中,研究者发现用硅制造的自旋量子比特可能在量子计算领域具有很好的发展前景。

“硅自旋是自然界最优秀的自然量子位之一,”研究报告作者Stephanie Simmons说,她是加拿大不列颠哥伦比亚省西蒙菲莎大学的量子工程师

自旋量子位中的“自旋”是粒子(如电子或原子核)的角动量。自旋可以向上或向下指向,就像指南针指向北方或南方一样。自旋量子位可以存在于叠加中,在叠加中它同时向两个方向定向。

硅自旋量子比特是迄今为止最稳定的量子比特之一。此外,在全球半导体行业数十年发展工作的支持下,这项技术理论上可以迅速扩大规模。

“截至目前,科学家们只在硅电子中测量了单自旋。这反过来意味着将自旋纠缠在一起的唯一方式是电磁,而这这必须通过彼此非常接近的量子比特来完成,”Simmons表示,“从工程角度来看很难扩展。”

现在,研究人员首次在硅的量子位中通过光学方式检测到单自旋。Simmons 认为,这种对自旋量子位的光学访问表明,有朝一日可能会利用光“让量子位在芯片上或数据中心上相互纠缠,就像它们并排在一起一样容易”。

新的自旋量子比特基于辐射损伤中心(radiation damage centers),也即使用离子注入或高能电子辐射产生的硅内部缺陷。具体而言,它们可以被称为 T 中心(T centers),每个都由两个碳原子、一个氢原子和一个不成对电子组成。

每个T中心都有一个未配对的电子自旋和一个氢原子核自旋,每个都可以作为量子位。电子自旋可以保持相干或稳定超过2毫秒;氢原子的核自旋可以保持1.1秒以上。Simmons说:“我们的硅自旋量子比特的长寿命已经相当有竞争力,我们有办法把它们推向更远的地方。”

研究人员在商业行业标准绝缘体上硅集成光子晶片上印制了150000个被称为“微圆盘(micropucks)”的点。西蒙菲莎大学的研究主要作者Daniel Higginbottom说,每个微圆盘的宽度从0.5到2.2微米不等,它们平均都拥有一个 T 中心。

在磁场下,每个T中心的自旋量子位态的能量稍有不同,每个都发射不同波长的光。这使科学家能够在这些T中心光学检测每个自旋量子位的状态。

这些自旋量子位发射的波长位于近红外O波段。这意味着这些自旋量子位可以通过发射电信网络中常用的那种光与其他量子位连接,帮助量子位在量子处理器内协同工作,并帮助量子计算机通过量子互联网进行合作。

此外,“电子和核自旋量子比特可以一起操作——核自旋作为长寿命记忆量子比特,电子自旋作为光耦通信量子比特,并且可以使用微波场在它们之间交换信息,”Simmons说,“没有任何其他物理量子系统将提高西能量子存储器、与电信光子的直接和牢固联系以及硅的商业前景结合在一起,硅是现代微电子和集成光子学的世界顶级平台。”

自20世纪70年代以来,科学家就知道了T中心。Simmons说,“研究人员可能认为硅中的候选自旋光子量子位不太可能与金刚石和碳化硅等其他材料中的候选自旋光子量子位竞争。这对我们来说是个谜。”

总之,“我们对这些量子位的基本可扩展性感到最兴奋,”Simmons说,“这是量子计算机国际竞赛的新参与者,我们认为前景非常光明。”

虽然研究人员在这项新的研究中制造了许多量子比特,“这些还没有连接到一台工作的量子计算机上,”Simmons警告说,“对这些自旋的光学访问将使这种布线比许多其他方法容易得多,但这项技术仍然很年轻,还有很多工作要做。”

审核编辑:彭静
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 处理器
    +关注

    关注

    68

    文章

    18248

    浏览量

    222042
  • 晶体管
    +关注

    关注

    76

    文章

    9045

    浏览量

    135155
  • 量子计算机
    +关注

    关注

    4

    文章

    461

    浏览量

    25022

原文标题:一块硅芯片打造15万量子比特?

文章出处:【微信号:IEEE_China,微信公众号:IEEE电气电子工程师】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    量子计算机重构未来 | 阅读体验】 跟我一起漫步量子计算

    的干扰,保持量子比特的稳定性是一个巨大的技术难题。此外,量子编程和算法的发展也还处于初级阶段,需要更多的研究和探索。 尽管面临挑战,但量子
    发表于 03-13 19:28

    量子

    具有一些特殊的性质,如叠加和纠缠,使得量子计算机能够在某些情况下比传统计算机更高效地解决某些问题。 量子
    发表于 03-13 18:18

    量子计算机重构未来 | 阅读体验】+ 了解量子叠加原理

    机如何生产制造。。。。。。 近来通过阅读《量子计算机—重构未来》一书,结合网络资料,了解了一点点量子叠加知识,分享给大家。 先提一下电子计算机,电子
    发表于 03-13 17:19

    量子计算机重构未来 | 阅读体验】+量子计算机的原理究竟是什么以及有哪些应用

    计算方法的区别传统方法是,按照不走枚举所有情况,而量子计算是一次处理所有情况,是一步到位。但是这里又有疑惑了,量子计算如何实现的一步到位呢,
    发表于 03-11 12:50

    量子计算机重构未来 | 阅读体验】第二章关键知识点

    量子计算机的工作原理--量子叠加的概念。即手指朝上代表逻辑1,手指朝下代表逻辑0,但是呢,如果手指超中间怎么表示呢?这就是量子比特中的
    发表于 03-06 23:17

    量子计算机重构未来 | 阅读体验】+ 初识量子计算

    大语言模型训练会是一个怎样的情景。。。。。。 希望量子计算机尽快走出实验室,能够早日进入寻常百姓家,更希望我国的量子计算机取得突破,蓬勃发展
    发表于 03-05 17:37

    量子计算机重构未来 | 阅读体验】初探

    ,自己专门去查阅了网上的资料,发现量子计算能用一个量子比特表示以前需要多个门电路组合才能表示的数据。也就意味着,以前需要复杂门电路实现的逻辑运算,在
    发表于 03-04 23:09

    量子计算机的作用有哪些

    量子计算机是一种基于量子力学原理的新型计算机,它利用量子比特(qubit)进行信息处理,
    的头像 发表于 12-30 14:32 655次阅读

    什么是逻辑量子比特?怎样用其实现量子纠错呢?

    逻辑量子比特(Logical Qubit)由多个物理量子比特组成,可作为量子计算系统的基本
    的头像 发表于 12-21 18:24 433次阅读
    什么是逻辑<b class='flag-5'>量子</b><b class='flag-5'>比特</b>?怎样用其实现<b class='flag-5'>量子</b>纠错呢?

    【芯闻时译】推进用于量子计算的硅自旋量子比特研究

    科学实验室(LPS)、国家级量子信息科学(QIS)研究中心Qubit Collaboratory(LQC)合作,推进量子计算研究。 △微型扫描仪在医疗技术中潜力巨大 英特尔量子硬件总监
    的头像 发表于 07-24 17:33 273次阅读

    量子计算机又进一步!英特尔发布全新硅自旋量子比特芯片Tunnel Falls

    今天,英特尔发布包含12个硅自旋量子比特(silicon spin qubit)的全新量子芯片Tunnel Falls,继续探索量子实用性,
    的头像 发表于 06-17 10:15 440次阅读
    离<b class='flag-5'>量子</b><b class='flag-5'>计算</b>机又进一步!英特尔发布全新硅<b class='flag-5'>自旋</b><b class='flag-5'>量子</b><b class='flag-5'>比特</b>芯片Tunnel Falls

    “寿命”最长的量子比特出现

    制造量子计算机的第一步是选择如何制造其核心要素量子比特。迄今为止,商业上最成功的超导量子比特是晶
    的头像 发表于 05-31 09:39 426次阅读

    本源量子和中科大团队合作实现硅基量子计算自旋量子比特的超快调控

    ,在硅基锗量子点中实现了自旋量子比特操控速率的电场调控,以及自旋翻转速率超过1.2GHz的自旋
    的头像 发表于 05-09 15:50 461次阅读
    本源<b class='flag-5'>量子</b>和中科大团队合作实现硅基<b class='flag-5'>量子</b><b class='flag-5'>计算</b><b class='flag-5'>自旋</b><b class='flag-5'>量子</b><b class='flag-5'>比特</b>的超快调控

    硅基半导体自旋量子比特实现超快调控

    来源:科技日报 5月7日从中国科学技术大学获悉,该校郭光灿院士团队郭国平教授、李海欧教授等人与国内同行以及本源量子计算有限公司合作,在硅基锗量子点中实现了自旋
    的头像 发表于 05-09 15:22 397次阅读
    硅基半导体<b class='flag-5'>自旋</b><b class='flag-5'>量子</b><b class='flag-5'>比特</b>实现超快调控

    本源量子和中科大团队合作在多能级量子比特操控上实现新进展

    量子态的操控和演化在量子计算领域具有重要应用。所有的量子门操作,本质上都是这种操控的结果。这一原
    的头像 发表于 04-26 10:40 756次阅读
    本源<b class='flag-5'>量子</b>和中科大团队合作在多能级<b class='flag-5'>量子</b><b class='flag-5'>比特</b>操控上实现新进展